Montrave in R

Case studies

02 September 2015

Contents

1 Analysis of robin line transect data
11 Readingline transectdatafroma CSVfile
12 Massagingthedata
121 Multiplewalksof transects
122 Filteringby species L
1.3 Detection function fitting for line transectdata
14 Goodness of fitforlinetransectdata

1.5 Reportdensity estimates for linetransectdata. L

2 Analysis of robin point transect data
21 Reading point transect datafroma CSVfile
22 Massagingthedata
2.3 Detection function fitting to snapshot pointcounts L
2.4 Goodness of fit for snapshot pointcounts L

2.5 Report density estimates for pointtransectdata L L
1 Analysis of robin line transect data

library(Distance)
library (knitr)
1.1 Reading line transect data from a CSV file

This is a one-line operation.

birds.line <- read.csv("montrave-line.csv")

1.2 Massaging the data

This is more challenging, because of two ideosyncracies of this survey.

—_

w w NN

[0 N e N ¥ N ¥ N

Distance sampling: Methods and applications case studies September 2, 2015 2

1.21 Multiple walks of transects

Prof. Buckland walked each of the transects twice. This must be taken into account in the analysis, lest the density estimates
be too high by a factor of two. In the Distance GUI project, there is a column labelled visits in the Study area layer.
This treats visits as a multiplier applied to all transect line lengths. | have chosen a different option here, and | have simply
multiplied the column Effort by the column | have relabelled repeats.

birds.line$Effort <- birds.line$Effort * birds.line$repeats

1.2.2 Filtering by species

A more challenging set of alteration to the data is to analyse data for a single species. You may recall that during the Montrave
survey, Prof. Buckland recorded detections of a number of species; we wish here to only analyse data for robins. It is quite
simple to select only the records describing detections of robins. That can be accomplished either with the subset function,
or by specifying a test condition that will retain rows of the data frame that match that condition. | show both.

A much stickier problem is created by this filtering by species. The problem is that some transects may not have had detec-
tions of the species of interest. The effort associated with all transects (whether or not robins were detected) need to be
included in the analysis, otherwise density will be estimated improperly because survey effort is not carried forward after
filtering out only detections of robins.

The code below determines line lengths for all transects, determines whether any transects failed to have robin detections (3
of 19 transects did not have robin detections). Line lengths for those 3 transects are appended onto the robins data frame.
The data frame is sorted by Sample . Label such that the empty transects appear in the proper sequence in the data frame.

robins <- birds.line[birds.line$species=="r",]
robins <- subset(birds.line, species=="r") # is equivalent

http://stackoverflow.com/questions/13765834/r-equivalent-of-first-or-last-sas-operator
findFirstLast <- function(myDF, findFirst=TRUE) {
myDF should be a data frame or matriz
By default, this function finds the first occurence of each unique value in a column
If instead we want to find last, set findFirst to FALSE.
This will give “mazOrMin” a value of -1 finding the min of the negative indezxes
is the same as finding the maxz of the positive indezxes
max0rMin <- ifelse(findFirst, 1, -1)
For each column in myDF, make a list of all unique values (“levs”) and
iterate over that list, finding the min (or maz) of all the indezes
of where that given wvalue appears within the column
apply (myDF, 2, function(colm) {
levs <- unique(colm)
sapply(levs, function(lev) {
inds <- which(colm==lev)
ifelse(length(inds)==0, NA, maxOrMin*min(inds*maxOrMin))
H
1))
X
tran.with.robins <- unique(robins$Sample.Label) # transect IDs with Tobins
all.trans <- seq(l: length(unique(birds.line$Sample.Label))) # transect IDs all transects
empty transects will occupy the last few elements of the union statement
empty.transects <- union(tran.with.robins,
all.trans) [(length(tran.with.robins)+1) :length(all.trans)]
what are the lengths of those empty transects?
all.transect.lengths <- findFirstLast(birds.line)$Sample.Label
lengths.empty.transects <- birds.line$Effort[all.transect.lengths[empty.transects]]
append 'blank' rows to bottom of species-specific data set
retain effort of transects with no sightings
empty <- NULL

Distance sampling: Methods and applications case studies September 2, 2015 3

for (i in 1:length(empty.transects)) {
blank <- cbind(birds.line[1,1:3], empty.transects[i], lengths.empty.transects[i])
empty <- rbind(empty, blank)

}

empty[,c("A","B","C")] <- NA # pad out columns that are blank (distance, species, vistit)

names (empty) <- names(birds.line)

robins <- rbind(robins, empty)

robins <- robins[order(robins$Sample.Label),]

1.3 Detection function fitting for line transect data
Only a small number of models are fitted to these data (matching those models fitted in the Distance GUI):

robin.hn.herm <- ds(robins, truncation=95, transect="line",
key="hn", adjustment="herm", convert.units=.1)
robin.uni.cos <- ds(robins, truncation=95, transect="line",
key="unif", adjustment="cos", convert.units=.1)
robin.haz.simp <- ds(robins, truncation=95, transect="line",
key="hr", adjustment="poly", convert.units=.1)
model.results <- rbind(robin.uni.cosdhtindividuals$D, robin.haz.simp$dht$individuals$D,
robin.hn.hermdhtindividuals$D)

1.4 Goodness of fit for line transect data

robin.breaks <- ¢(0,12.5,22.5,32.5,42.5,52.5,62.5,77.5,95) # from Distance GUI
fit.uni.cos <- ddf.gof(robin.uni.cos$ddf, breaks=robin.breaks,
main="Montrave robin line transect data, Uniform-cosine detection function")

Montrave robin line transect data, Uniform—cosine detection function

o |
—
0]
o | @)
O
Y= O
8 o 7
)
59 <
[o T &69
N
o | o
o |
e I I I I I I
0.0 0.2 04 0.6 0.8 1.0

Empirical cdf

Distance sampling: Methods and applications case studies September 2, 2015 4

plot(robin.uni.cos$ddf, showpoints=FALSE, pl.den=0, lwd=2, breaks=robin.breaks,
main="Fit of uniform-cosine to Montrave robin line transect data (Fig 5.6a)")

Fit of uniform—-cosine to Montrave robin line transect data (Fig 5.6a)

o
>
= o _ \
5 S \
o]
© ©
= 31 AN
o N
S o
5 3 - AN
@
0o I\ \
N -
o :l
e | | | | |
0 20 40 60 80
Distance

chirow <- c(fit.uni.cos$chisquare$chil$chisq, fit.uni.cos$chisquare$chil$p)
ksrow <- c(fit.uni.cos$dsgof$ks$Dn, fit.uni.cos$dsgofksp)
cvmrow <- c(fit.uni.cos$dsgof$CvM$W, fit.uni.cos$dsgofCvMp)
mytable <- rbind(chirow, ksrow, cvmrow)
rownames (mytable) <- c("Chi-square test", "K-S test", "CvM test")
kable(mytable, col.names = c("Test statistic", "P-value"), digits=3,
caption="Goodness of fit statistics, Montrave robin line transects, Uniform-cosine model")

Table 1: Goodness of fit statistics, Montrave robin line transects, Uniform-cosine
model

Test statistic P-value

Chi-square test 3.804 0.578
K-S test o1 0.281
CvM test onz 0.510

1.5 Report density estimates for line transect data

There is little to choose between fitted models, based upon either AIC or goodness of fit. We present the density estimates
and measures of precision for the three models fitted to the robin line transect data.

Inelegant way to build first column model names
model.results[,1] <- as.character(model.resultsl[,1])
model.results[1,1] <- "Unif.cosine"

Distance sampling: Methods and applications case studies September 2, 2015 5

model.results[2,1] <- "Hazard rate"
model.results[3,1] <- "Half-norm. Hermite"
kable(model.results[,1:6], digits=3,
caption="Density estimates under Uniform/cos, Hazard rate, and half-normal Hermite models (Tab

Table 2: Density estimates under Uniform/cos, Hazard rate, and half-normal

Hermite models (Table 6.3).
Label Estimate se cv lel ucl
Unif.cosine 0.686 0132 0192 0470 1.001
Hazard rate 0642 0083 0129 0495 0.832

Half-norm. Hermite 0.727 0111 0153 0.536 0985

2 Analysis of robin point transect data

The analysis of Montrave robin point count data mimics the analysis of robin line transect data: read data, filter by species,
fit detection functions, assess fit, report results.

2.1 Reading point transect data from a CSV file
This is a one-line operation.

birds.point <- read.csv("montrave-point.csv")

2.2 Massaging the data

As with transect data, filter for the species of interest. Note that in Table 1.2 of Buckland et al. (2015), there are 8 of the
32 transects without robin detections. The code below makes use of the function findFirstLast () used with the line
transect data to include effort of the points that had no detections. In this survey, all points were visited two times, so this
code is over-engineered to locate the effort associated with the points without detections. But the code provided can cope
with the case in which not all points are visited an equal number of times.

robins.pt <- subset(birds.point, species=='"r"
pt.with.robins <- unique(robins.pt$Sample.Label) # point IDs with robins
all.points <- seq(l: length(unique(birds.point$Sample.Label))) # point IDs all transects
empty points will occupy the last few elements of the union statement
empty.points <- union(pt.with.robins, all.points) [(length(pt.with.robins)+1):length(all.points)]
what was effort on empty points?
all.point.effort <- findFirstLast(birds.point)$Sample.Label
effort.empty.points <- birds.point$Effort[all.point.effort[empty.points]]
append 'blank' rows to bottom of species-specific data set
retain effort of transects with no sightings
empty <- NULL
for (i in 1:length(empty.points)) {
blank <- cbind(birds.point[1,1:2], empty.points[i], effort.empty.points[i])
empty <- rbind(empty, blank)
}
empty[,c("A","B","C")] <- NA # pad out columns that are blank (distance, species, visit)
names (empty) <- names(birds.point)
robins.pt <- rbind(robins.pt, empty)
robins.pt <- robins.pt[order(robins.pt$Sample.Label),]

Distance sampling: Methods and applications case studies September 2, 2015 6

2.3 Detection function fitting to snapshot point counts

Only a small number of models are fitted to these data (matching those models fitted in the Distance GUI):

robin.pt.hn.herm <- ds(robins.pt, truncation=110, transect="point",
key="hn", adjustment="herm", convert.units=.01) # change in conversion
robin.pt.uni.cos <- ds(robins.pt, truncation=110, transect="point",
key="unif", adjustment="cos", convert.units=.01)
robin.pt.haz.simp <- ds(robins.pt, truncation=110, transect="point",
key="hr", adjustment="poly", convert.units=.01)
pt.model.results <- rbind(robin.pt.uni.cosdhtindividuals$D, robin.pt.haz.simp$dht$individuals$D,
robin.pt.hn.hermdhtindividuals$D)

2.4 Goodness of fit for snapshot point counts

robin.breaks <- ¢(0,22.5,32.5,42.5,52.5,62.5,77.5,110) # from Section 5.2.3.3
fit.pt.haz.simp <- ddf.gof (robin.pt.haz.simp$ddf, breaks=robin.breaks,
main="Montrave robin point transect data, hazard rate detection function")

Montrave robin point transect data, hazard rate detection function

1.0

0.8
o

Fitted cdf
0.4 0.6

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Empirical cdf

In addition to the QQ plot, another visual measure of the fit of the model to point count data is the PDF fitted to a histogram
of radial detection distances. The function ds has no built-in plotter for the PDF (as does the Distance GUI software). The
code below manufactures a PDF plotter and uses it upon the hazard rate model for the robin point count data.

hazard <- function(y, sigma, shape) {
key <- 1l-exp(-(y/sigma)” (-shape))
return(key)
}
haz <- function(distances, ddfobj, point=TRUE) {
sigma <- exp(ddfobj$par([2]) # contrary to hn models

Distance sampling: Methods and applications case studies September 2, 2015

shape <- exp(ddfobj$par[1])
pr.detect <- hazard(distances, sigma, shape)
if (point) pr.detect <- pr.detect * distances
return(pr.detect)
}
pdf .point <- function(ddf.obj, mybreaks, ...) {
ddf.obj is produced by a call to ds()
result is a plot
sort out the pdf
upperbnd <- ddf.obj$meta.data$int.range[2]
distances <- seq(0,upperbnd,length.out = 75)
if (ddf.objdsaux$ddfobj$type=="hn") {
detfn.line <- hnherm(distances, point=TRUE, ddfobj = ddf.obj)
df .integral <- integrate(hnherm, lower=0, upper=upperbnd, point=TRUE,
ddfobj=ddf.obj) [1] $value
}
if (ddf.objdsaux$ddfobj$type=="hr") {
detfn.line <- haz(distances, point=TRUE, ddfobj=ddf.obj)
df .integral <- integrate(haz, lower=0, upper=upperbnd, point=TRUE,
ddfobj=ddf.obj) [1] $value
3
detfn.line <- detfn.line / df.integral
mnow for the bars
hist.dist <- hist(ddf.obj$data$distance, breaks=mybreaks, plot=FALSE)
picture

plot(hist.dist, freq=FALSE, xlab="Distance", ylab="Probability density",...)
lines(x=distances, y=detfn.line,...)

box ()

return(hist.dist)

b
point.plot <- pdf.point(robin.pt.haz.simp$ddf, mybreaks=robin.breaks,
main="Montrave robin point counts, hazard pdf", lwd=2)

Distance sampling: Methods and applications case studies September 2, 2015 8

Probability density

Montrave robin point counts, hazard pdf

0.020
|

_ // N

0.010
|

0.000

0 20 40 60 80 100

Distance

chirow <- c(fit.pt.haz.simp$chisquare$chil$chisq, fit.pt.haz.simp$chisquare$chii$p)
ksrow <- c(fit.pt.haz.simp$dsgof$ks$Dn, fit.pt.haz.simp$dsgofksp)

cvmrow <- c(fit.pt.haz.simp$dsgof$CvM$W, fit.pt.haz.simp$dsgofCvMp)

mytable <- rbind(chirow, ksrow, cvmrow)

rownames (mytable) <- c("Chi-square test", "K-S test", "CvM test")

kable(mytable, col.names = c("Test statistic", "P-value"), digits=3,

caption="Goodness of fit statistics, Montrave robin point transects, hazard rate model")

Table 3: Goodness of fit statistics, Montrave robin point transects, hazard rate
model

Test statistic P-value

Chi-square test 6.390 0.172
K-S test 0.129 0.377
CvM test 0.130 0.457

2.5 Report density estimates for point transect data

The density estimates can be contrasted with results presented in Section 6.3.1.4 of Buckland et al. (2015).

Inelegant way to build first column model names
pt.model.results[,1] <- as.character(model.results[,1])
pt.model.results[1,1] <- "Unif.cosine"
pt.model.results[2,1] <- "Hazard rate"
pt.model.results[3,1] <- "Half-norm. Hermite"
kable(pt.model.results[,1:6], digits=3,

caption="Density estimates under Uniform/cos, Hazard rate, and half-normal Hermite models (Tab

Distance sampling: Methods and applications case studies September 2, 2015 9

Table 4: Density estimates under Uniform/cos, Hazard rate, and half-normal
Hermite models (Table 6.4).

Label Estimate se cv lel ucl
Unif.cosine 0651 0107 0164 0.468 0.906
Hazard rate 0587 0130 0222 0379 0908

Half-norm. Hermite 0.624 0369 0591 0.208 1.869

This set of code associated with the Montrave robin data shows the ideosyncracies of contrasting results derived from the
Distance GUI with results produced by the R package Distance. With the tips provided herein, interested practicioners can
produce roughly comparable results taking either route.

This document describes a case study from

Distance Sampling: Methods and Applications
published by Springer

See Case studies website

Also see Distance sampling website

http://www.springer.com/gb/book/9783319192185?countryChanged=true
http://www.creem.st-and.ac.uk/DS.M&A/
http://distancesampling.org

	Analysis of robin line transect data
	Reading line transect data from a CSV file
	Massaging the data
	Multiple walks of transects
	Filtering by species

	Detection function fitting for line transect data
	Goodness of fit for line transect data
	Report density estimates for line transect data

	Analysis of robin point transect data
	Reading point transect data from a CSV file
	Massaging the data
	Detection function fitting to snapshot point counts
	Goodness of fit for snapshot point counts
	Report density estimates for point transect data

