
Distance sampling: methods and applications
Bayesian methods, Northern bobwhite case study; Cornelia Oedekoven

Contents

1 The data 2

1.1 Importing the data and functions into an R Studio workspace . 2

1.2 Preparing the data for analyses . 3

2 Setting up a Metropolis Hastings updating algorithm 4

2.1 Defining the likelihood function . 5

2.1.1 Components of the probability density function of observed distances 5

2.1.2 Assigning the parameter values p for covey.full.bayes.log.lik 6

2.1.3 The likelihood component for the detection function for covey.full.bayes.log.lik 7

2.1.4 The likelihood component for the count model for covey.full.bayes.log.lik 9

2.2 Defining the prior probabilities for the parameters . 10

2.3 Proposal distributions for updating parameters in the MH algorithm . 11

2.4 Initial values for the MH updating algorithm . 11

2.5 Storing the parameter values for the MH updating algorithm . 12

2.6 The MH updating algorithm . 12

2.7 Pilot tuning the MH updating algorithm . 14

2.7.1 Inference from an MH updating algorithm . 14

2.7.2 Inference on plot density from an MH updating algorithm . 18

3 Setting up a reversible jump MCMC algorithm 19

3.1 The RJ step . 19

3.2 Defining the likelihood function for the RJMCMC algorithm . 20

3.3 Prior probability distributions . 20

3.4 Proposal distributions for the RJ step . 21

3.5 Storing the parameter values and model choices for each iteration . 21

3.6 Setting initial models and parameter values for the RJMCMC algorithm . 22

3.7 The RJMCMC algorithm . 23

3.8 Pilot tuning the RJMCMC algorithm . 29

3.9 Inference from an RJMCMC algorithm . 29

3.9.1 Inference on model probabilities from an RJMCMC algorithm . 29

3.9.2 Inference on parameters from an RJMCMC algorithm . 30

3.9.3 Inference on plot density from an RJMCMC algorithm . 32

1

Distance sampling: Methods and applications case studies May 12, 2015 2

4 Maximum likelihood methods for a full likelihood approach 32

4.1 Defining the likelihood function for the maximum likelihood approach . 32

4.1.1 Assigning the parameter values p . 32

4.1.2 The likelihood component for the detection function - maximum likelihood methods 33

4.1.3 The likelihood component for the count model . 34

4.2 Obtaining maximum likelihood estimates . 35

4.2.1 Solving the convergence problem . 36

4.2.2 Comparing the parameter estimates from the Bayesian and maximum likelihood approaches 38

4.2.3 Inference on plot density from the maximum likelihood approach 38

5 Summary 39

6 Acknowledgements 40

References 40

We use the case study of northern bobwhite quail coveys to demonstrate the methods described in Section 8.4 Model fitting:
Bayesian Methods of the book. We present the R code for analysing distance sampling data using Bayesian methods including
a Metropolis-Hastings algorithm and an RJMCMC algorithm. For comparison, we demonstrate the methods and R code
for implementing maximum likelihood methods for the full likelihood approach from Section 8.3 Model fitting: maximum
likelihood methods of the book. For this approach we refrain from including model selection. However, we emphasize the
differences in the likelihood formulations for the Bayesian and maximum likelihood approaches. Although the presented
code is specific to the covey data, we use the block quote to advise the users how they may adjust the code according to their
needs.

A block quote example where advice about altering code will be provided.

The R code provided below consists of commented scripts that the user may run in their R workspace to complete the exercise.
In addition, we present the R functions written for this exercise. The user can upload these at the beginning of the exercise
using the source commands below and does not need to run these again when presented in the script.

1 The data

The covey data stem from a designed experiment where the interest was in determining whether a conservation measure -
planting herbaceous buffers around agricultural fields - had the desired effect. For this purpose, pairs of survey points were
set up in several states in the US, one point on a buffered treatment field, one point on an unbuffered control field. Pairs of
points were surveyed at least once but up to three times per year in autumn from 2006 to 2008.

As the interest was in determining whether covey densities were higher on treatment fields, we use plot count models where
the observed counts are modelled as a function of covariates. Here, the parameter of interest is the coefficient for the Type
covariate for the level “TREAT”. A coefficient that is significantly greater than zero would indicate that the buffers had the
desired effect, i.e., increased covey densities. Due to the repeated counts and the spatial closeness of points within a pair,
we include a random effect for each site (where ‘site’ refers to a pair of points) in the count model (see below for details). For
simplicity, we reduced the data presented in Section 8.5.2 of the book to four states leaving 183 sites. In addition, we did
not include the covariate Year for the detection or count models. Hence, the resulting parameter estimates are not directly
comparable to those presented in Section 8.5.2.

1.1 Importing the data and functions into an R Studio workspace

For completing this case study, we need to download the zip file CoveyCaseStudy.zip and extract these into a designated
folder on our personal computers. Source the functions necessary for the case study, by running the following R code.

CaseStudyBOWH.zip

Distance sampling: Methods and applications case studies May 12, 2015 3

source("bl.function.r")
source("covey.full.bayes.log.lik.r")
source("covey.full.bayes.log.lik.raneff.update.r")
source("covey.ml.log.lik.r")
source("covey.ml.log.lik2.r")
source("create.data.r")
source("create.glmm.data.r")
source("create.glmm.data.unconditional.r")
source("f.haz.function.ln.r")
source("f.haz.function.pt.r")
source("f.hn.function.ln.r")
source("f.hn.function.pt.r")
source("l.prior.r")
source("match.function.r")
source("var.Dblml.r")
source("which.bin.r")

In addition to these functions, we need read the data, provided as a .csv file:

covey<-read.csv("covey.csv")

1.2 Preparing the data for analyses

We begin by ensuring that the data have the correct format required for using the likelihood functions in the following sections.
For this purpose, we first look at the raw data contained in the covey data frame.

kable(covey[1:3,], digits=1)

gr.id smp.id Repetition Year State Type JDctr det.id distance vis.id size

183 365 1 2006 MO CONTROL 0 1 401.6 2006_1 1
183 365 1 2006 MO CONTROL 0 2 286.2 2006_1 1
183 365 1 2006 MO CONTROL 0 3 327.9 2006_1 1

The columns represent the locations or sites (gr.id), point (smp.id), visit (vis.id), detection (det.id), distance to the detection
(distance) and group size of the detection (size). These are the columns that are required for using the data formatting and
likelihood functions below. Note that for the covey data group sizes were unknown and we model numbers of detections
rather than number of individuals. However, the size column is required by the following functions. In addition to the required
columns, we have covariates State, Type and JDctr which were measured at the level of a visit to a point (as opposed to the
level of individual detections). Covariate JDctr represents Julian date which was centred around its mean.

Each record represents either a detection or a visit without detection in the case that no coveys were detected during the
respective visit to the point. The data are already truncated at 500m, i.e., the largest distance included in the covey data is
500m or less.

max(covey$distance,na.rm=T)

[1] 497.58

We use the covey case study function create.data to turn the raw covey data into a format that allows us to fit the
detection and count models below. For the detection model, we need a data frame (which we call dis.object) which
contains all the records of detections within the truncation distance including their distances and covariates that may be
included in the detection model. For the count model, we need a data frame (which we call glmm.data) where each record
represents a visit to a point and the total number of detections within the truncation distance during that visit to the point is

Distance sampling: Methods and applications case studies May 12, 2015 4

recorded. The data frame glmm.data contains some columns that are required such as a unique identifier for each visit to
a point (smp.vis), smp.id, gr.id and vis.id from before, as well as the columns detections and individuals
(which give the total number of detections and detected individuals for each visit to a point, respectively) and the covariates
that might be used in the count model, Type, JDctr and State.

Both the dis.object and glmm.data data frames are created by the function create.data and combined in a list
containing additional information. The additional information includes the type of sampler the data related to (points or
lines), the units of distance measurements, whether we are using binned distance data, which covariates may be used in the
detection and count models and which of these should be regarded as a factor covariate and what type of analysis we would
like to use the data for. The argument conditional refers to whether we use the conditional likelihood (FALSE refers to
the methods using equations 8.25 and 8.27 of the book and only applies to binned distance data).

creating a data object which can be used with the functions below
covey.data<-create.data(covey,500,sampler="points","m",binned=F,
dis.cov=c("Type","State"),count.cov=c("Type","JDctr","State"),
dis.factor.cov = c("Type","State"), count.factor.cov = c("Type","State"),
conditional = T)

to have a look at what covey.data contains
str(covey.data, max.level=1)

List of 12
$ w : num 500
$ sampler : chr "points"
$ dis.unit : chr "m"
$ sampler.unit : chr "m"
$ binned : logi FALSE
$ dis.cov : chr [1:2] "Type" "State"
$ dis.cov.fac : logi [1:2(1d)] TRUE TRUE
$ count.cov : chr [1:3] "Type" "JDctr" "State"
$ count.cov.fac: logi [1:3(1d)] TRUE FALSE TRUE
$ conditional : logi TRUE
$ dis.object :'data.frame': 1023 obs. of 12 variables:
$ glmm.data :'data.frame': 1051 obs. of 9 variables:

To analyse distance data that were collected in predefined distance bins, the argument binned of the
create.data function needs to be set to TRUE and cutpoints of the distance intervals defined using the
argument cutpoints. The column distance needs to contain a distance from within the distance bin
to which the detection belongs (e.g. the mid-point of the bin). The bins are automatically assigned and the
columns bin, distbegin and distend added to the data frame dis.object. The column bin refers to
the bin number while distbegin and distend refer to the cutpoints of the respective bin. The user may
also use these settings to analyse exact distance data as binned.

2 Setting up a Metropolis Hastings updating algorithm

Setting up a Metropolis Hastings (MH) updating algorithm involves several steps. These include:

1. Defining the likelihood function
2. Defining the prior probabilities for the parameters
3. Proposal distributions for updating parameters in the MH algorithm
4. Initial values for the MH updating algorithm
5. Storing the parameter values for the MH updating algorithm
6. The MH updating algorithm
7. Pilot tuning the MH updating algorithm

Distance sampling: Methods and applications case studies May 12, 2015 5

In this section, we provide the functions and R code necessary to implement these steps. In addition, we describe how to
obtain summary statistics of the posterior distributions of parameters and plot density. We begin with the theory for this
algorithm.

We use a single-update random walk MH algorithm with normal proposal density, where we cycle through each parameter
in the full likelihood Ln,y|z (see below for the full likelihood used for our case study). During each iteration of the MCMC
algorithm, we update each of the parameters by proposing to move to a new state and accepting this move with some
probability. To update, say, parameter β0 (contained in the model with parameters β0 and θ) at iteration t with current value

βt
0, we propose to move to a new state, β′

0, with β′
0 ∼ N

(
βt

0, σ2
β0

)
(Hastings (1970),Davison (2003)), where σ2

β0
is the

proposal variance for β0. This newly proposed state is accepted as the new state with probability α(β′
0|βt

0) given by:

α(β′
0|βt

0) = min
(

1,
Ln,y|z(β′

0, θt)p(β′
0)q(βt

0|β′
0)

Ln,y|z(βt
0, θt)p(βt

0)q(β′
0|βt

0)

)
. (1)

where Ln,y|z(β′
0, θt) is the full likelihood calculated using the newly proposed value β′

0 and current values θt; p(β′
0) is the

prior distribution for β0 evaluated at β0 = β′
0 and q(β′

0|βt
0) denotes the proposal density of the newly proposed state β′

0
given that the current state is βt

0. We note that the terms q(βt
0|β′

0) and q(β′
0|βt

0) cancel in the acceptance probability as we
use a symmetrical proposal distribution (normal). Equation 1 is equivalent to equation 8.39 from Section 8.4.1 of the book.

In the following we describe each of the terms required to calculate the acceptance probability, i.e., the likelihood, the prior
distributions and the proposal distributions.

2.1 Defining the likelihood function

In Section 8.2.2 of the book we learned that when including covariates in the detection function, the full likelihood is Ln,z,y =
Ln ×Lz ×Ly|z . However, in comparison to Section 8.2.2, we use a plot count model Ln introduced in Section 8.2.4.1 of the
book and extended with a random effect in Section 8.2.5.1. As it can be difficult to specify a good model for the covariates z,
we can simplify the modelling by omitting the component Lz from the likelihood and using the remainder, conditional on z:

Ln,y|z = Ln × Ly|z .

To avoid numerical problems, we use the log-likelihood which is given by:

ℓn,y|z = loge

(
Ln,y|z

)
= loge (Ln) + loge

(
Ly|z

)
.

The function covey.full.bayes.log.lik calculates the log-likelihood given a set of values for parameters p and ran-
dom effect coefficients raneff for a full model (see below) for the covey data. It has three arguments: p, raneff and datax
(here datax = covey.data). This function expects certain elements in the data; hence, it is essential that the covey data
is in the format described above, i.e., a data object created with the create.data function.

In the following we look at each component of the likelihood Ln and Ly|z separately and present the R code of the
covey.full.bayes.log.lik that corresponds to the respective components. The code incovey.full.bayes.log.lik
can be divided into three parts, i.e. assigning the parameter values p, the likelihood component for the detection function
and the likelihood component for the count model, which we discuss individually below.

However, before we look at the covey.full.bayes.log.lik function, we take a step back and review the components
of the probability density function of observed distances used for the detection model.

2.1.1 Components of the probability density function of observed distances

The probability density function of observed distances is generally composed of two other functions, the detection function
g(y) and the function π(y) describing the expected distribution of animals with respect to the point (or line in the case of line
transects). For g(y), we focus on the hazard-rate model as in preliminary analyses (fitting detection functions to the distance
data using program Distance) we found that this function provided the better fit to the covey distance data compared to the
half-normal. The hazard-rate contains the shape parameter b and the scale parameter σ. If the latter is modelled as a function
of covariates z the function is given by:

g(yi, zi) = 1 − exp
[
(−yi/σ(zi))−b

]
, 0 ≤ yi ≤ w . (2)

Distance sampling: Methods and applications case studies May 12, 2015 6

where, for our case study of point transect data, the yi represent the radial distances from the point to the ith detection
(for the i = 1, 2, 3, ..., n detections), the zi are the covariate measurements at the ith detection and w is the truncation
distance.

For point transects, the function π(y) describing the expected distribution of animals with respect to the point is given by:

π(y) = 2yπ/πw2 .

This function is evaluated at each yi for i = 1, ..., n to evaluate the log-likelihood of equation 3 (see below). As π(y) is in the
numerator and denominator of equation 3, we can omit the constants of π(y) (i.e., 2π/πw2) from this equation as this will
speed up the MH algorithm. Then, using these functions for g(y, z) and π(y), we can use the following R code to calculate
f(yi|zi).

f.haz.function.pt<-function(dis,sigma,shape) {
f <- dis*(1-exp(-(dis/sigma)^(-shape)))
f

}

Here, the argument dis represents the yi and sigma and shape represent the σ(zi) and b from equation 2. In the case
that covariates are part of the detection model, the value for argument sigma needs to represent the following:

σ(zi) = exp

(
α +

Q∑
q=1

βqziq

)
,

where α represents the scale intercept and the βq the coefficients for Q covariates zq included in the model.

In the case that the user wants to fit a half-normal detection function to point transect data instead of the
hazard-rate, the following R function can be used instead of f.haz.function.pt:

f.hn.function.pt<-function(dis,sigma) {
f <- dis*exp(-dis^2/(2*sigma^2))
f
}

In the case that the user wishes to analyse data that originated from line transect surveys, the following R
code for detection models with the hazard-rate and half-normal detection function should be used instead of
functions f.haz.function.pt and f.hn.function.pt for evaluating the likelihood from equation 3.

f.haz.function.ln<-function(dis,sigma,shape) {
f <- 1-exp(-(dis/sigma)^(-shape))
f

}
f.hn.function.ln<-function(dis,sigma) {
f <- exp(-dis^2/(2*sigma^2))
f
}

2.1.2 Assigning the parameter values p for covey.full.bayes.log.lik

For illustrating the MH algorithm, we use the full set of covariates available for the detection and count models which includes
the factor covariates Type and State for both models and, in addition for the count model, the continuous covariate JDctr which
represents Julian date centred around its mean.

covey.full.bayes.log.lik<-function(p, raneff, datax){
Part 1 of covey.full.bayes.log.lik(): setting up parameter values p for covariates
the detection model

Distance sampling: Methods and applications case studies May 12, 2015 7

scale.int<-p[1] # the scale intercept
shape<-exp(p[2]) # the shape parameter on the log-scale
sig.t<-c(0,p[3]) # coefficient for Type level "TREAT" (level "CONTROL is absorbed in

the intercept)
sig.st<-c(0,p[4:6]) # state coefficients for levels "MS","NC","TN" (level "MO" is

absorbed in the intercept)
the count model
int<-p[7] # the intercept
typ<-c(0,p[8]) # coefficient for Type level "TREAT" (level "CONTROL" is absorbed

in the intercept)
day<-p[9] # coefficient for JDctr
st<-c(0,p[10:12]) # state coefficients for levels "MS","NC","TN" (level "MO" is

absorbed in the intercept)
std.ran<-exp(p[13]) # the random effects standard deviation on the log-scale

In the case that the user wishes to set up a corresponding likelihood function for their data, it is essential to
include all parameters in argument p and to assign the parameters correctly in the likelihood calculations shown
in the following sections.

2.1.3 The likelihood component for the detection function for covey.full.bayes.log.lik

The covey detection data consists of exact distances which are stored in the data frame covey.data$dis.object in the
columndistance. The truncation distance w is stored incovey.data$w. As we include covariates z in the detection func-
tion, we use equation 8.11 of the book as the likelihood component for the detection function which – after log-transforming
– is given by:

loge

(
Ly|z

)
=

n∑
i=1

loge f(yi|zi) =
n∑

i=1
loge

(
g(yi, zi)π(yi)∫ w

0 g(y, zi)π(y) dy

)
. (3)

Here, fy|z(yi|zi) is the probability density function of observed distances yi conditional on the covariates zi (and on n) (see
chapter 6 for details on fitting detection functions); w is the truncation distance. For our case study of point transect data,
the yi represent the radial distances from the point to the ith detection (for the i = 1, 2, 3, ..., n detections). The zi are the
covariate measurements at the ith detection. We note, however, that when using the effective area to adjust observed counts
for imperfect detection, individual level covariates cannot be used. The resolution of the covariates needs to be at the level
of the visit to the point or higher (see section on count model likelihood component below).

The following R code is the part of the function covey.full.bayes.log.likwhich calculates the log-likelihood for the
detection model loge

(
Ly|z

)
. Note that the truncation distance coveydata$w was set to 500 when formatting the data

using the function create.data.

Part 2 of covey.full.bayes.log.lik(): the likelihood component pertaining to the
detection model
calculating the f(y) for each observed distances
le<-nrow(datax$dis.object)
fe<-numeric(le)
alltype<-sort(unique(datax$dis.object$Type))
dis.type<-match(datax$dis.object$Type,alltype)
allstate<-sort(unique(datax$dis.object$State))
dis.state<-match(datax$dis.object$State,allstate)
the sigma(z) for each detection
allscale<-exp(scale.int+sig.t[dis.type]+sig.st[dis.state])
calculating the f(y) for each observation
note that the truncation distance is stored in datax$w
for (e in 1:le){
fe[e]<-f.haz.function.pt(datax$dis.object$distance[e],allscale[e],shape)/

integrate(f.haz.function.pt,0,datax$w,allscale[e],shape)$value
}

Distance sampling: Methods and applications case studies May 12, 2015 8

the sum of the log(f(y))
log.e<-sum(log(fe))

Both covariates for the detection model were factor covariates. Hence we use indicators dis.type and dis.state
for assigning the correct coefficients to the observations. Both indicators are vectors of the same length as
covey.data$dis.object$distance.

In the case that the user wishes to analyse binned distance data, we use the multinomial likelihood given by
equation 6.26 in the book. However, in practice, we use a reduced likelihood given by:

LyG =
u∏

j=1
f

mj

j ,

where the j = 1, 2, ..., u refer to the distance bins, fj refers to the probability that a detection was in the jth
bin and mj is the number of detections in the jth bin. The fj are obtained using

fj =

∫ cj

cj−1
g(y, z)π(y)dy∫ w

0 g(y, z)π(y)dy
,

where the cj are the cutpoints of the distance bins. The detection model may also include covariates in
the same manner as described above, i.e. in a model for the scale parameter of the hazard-rate or half-
normal detection function. When using binned distance data, the following R code replaces part 2 of the
covey.full.bayes.log.lik

For binned distance data: this replaces part 2 of covey.full.bayes.log.lik() above
This part of the function is not loaded by the code in first chunk
Part 2 of covey.full.bayes.log.lik(): the likelihood component pertaining to
the detection model
calculating the f_j for each detection
le<-nrow(datax$dis.object)
fj<-numeric(le)
alltype<-sort(unique(datax$dis.object$Type))
dis.type<-match(datax$dis.object$Type,alltype)
allstate<-sort(unique(datax$dis.object$State))
dis.state<-match(datax$dis.object$State,allstate)
the sigma(z) for each detection
allscale<-exp(scale.int+sig.t[dis.type]+sig.st[dis.state])
calculating the f_j for each observation (note that the truncation distance is
stored in datax$w and the cutpoints of the interval are in the columns distbegin
log.lik(): the likelihoodand distend of the data frame datax$dis.object)
for (e in 1:le){
fj[e]<-integrate(f.haz.function.pt,datax$dis.obect$distbegin[e],

datax$dis.object$distend[e],allscale[e],shape)$value/
integrate(f.haz.function.pt,0,datax$w,allscale[e],shape)$value

}
the sum of the log(fj)
log.e<-sum(log(fj))

For binned distance data, the calculations below for obtaining the effective area remain unchanged.

Distance sampling: Methods and applications case studies May 12, 2015 9

2.1.4 The likelihood component for the count model for covey.full.bayes.log.lik

For the count model we use a Poisson likelihood where the expected value λ is modelled as a function of covariates xq . Due
to the repeated counts at the sites, we use the methods described in Section 8.2.5.1 of the book and include a random effect
bl for each site in the count model for which we assume normality with bl ∼ N(0, σ2

l). In the following subscript l refers
to the different sites and subscript t to the repeated surveys. As each site also consisted of two points we also include a
subscript for point k. The expected value is then given by:

λlkt = exp

(
Q∑

q=1
xqkltβq + bl + loge(νlkt)

)
(4)

Note that in comparison to the equations given in Section 8.2.5.1 of the book, we replaced the product of the surveyed area
and the average detection probability alktPlkt with the equivalent quantity, the effective area νlkt.

Our case study included multiple points per site with repeat visits to each site. Hence, we combine the likelihood functions
from equations 8.31 and 8.33 of the book which include a random effect due to repeated visits to the same sampler and due
to multiple samplers at the same site, respectively. Including a random effect in the count model entails that, in addition to
the Poisson likelihoods given for the observed counts, we include normal densities for the random effect coefficients in the
likelihood (Oedekoven et al. 2014). However, as described in Section 8.4.1 of the book, when fitting random effect models
using the MH algorithm, the random effect is not integrated out analytically. Instead, we use a data augmentation scheme
where the individual random effect coefficients are included as parameters (or auxiliary variables) in the model and updated
at each iteration of the MCMC algorithm. As a consequence, when calculating the likelihood for a given set of values for the
parameters and the random effect coefficients, we can omit the integral for the random effect from the likelihood which is
now given by:

Ln =
L∏

l=1

{
K∏

k=1

Tk∏
t=1

λnlkt

lkt exp[−λlkt]
nlkt!

}
× 1√

2πσ2
l

exp
[
− b2

l

2σ2
l

]
,

where L is the total number of sites (183 for our case study), K is the total number of points per site (2 for each site for
our case study) and Tk is the number of repeat visits to the kth point (ranging between 1 and 4 for our case study). Without
the integral, we are able to perform a one-to-one log-transformation. Hence, after the log-transformation, our likelihood
component loge (Ln) for the count model is defined as:

loge (Ln) =
L∑

l=1

K∑
k=1

Tk∑
t=1

loge

(
λnlkt

lkt exp[−λlkt]
nlkt!

)
+

L∑
l=1

loge

(
1√

2πσ2
l

exp
[
− b2

l

2σ2
l

])
.

For the count model we use the count data which are in a data frame stored in covey.data$glmm.data. Here, each
record represents a single visit to a point and total numbers of detections within the truncation distance w are tallied for each
visit in the column covey.data$glmm.data$detections. The part of the covey.full.bayes.log.lik function
that calculates the count model likelihood component is given in the following R code:

Part 3 of covey.full.bayes.log.lik():
the likelihood component pertaining to the count model
setting up indices for the factor covariates and random effect coefficients
Type0<-match(datax$glmm.data$Type,sort(unique(datax$glmm.data$Type)))
State0<-match(datax$glmm.data$State,sort(unique(datax$glmm.data$State)))
gr.id<-sort(unique(datax$glmm.data$gr.id))
Ran0<-match(datax$glmm.data$gr.id,gr.id)
calculate the effective area for each visit to a point
glmm.sig<-exp(scale.int+sig.t[Type0]+sig.st[State0])
n.ptvis<-nrow(covey.data$glmm.data)
l.efa<-array(NA,n.ptvis)
for (j in 1:n.ptvis){
l.efa[j]<-log(integrate(f.haz.function.pt,0,datax$w,glmm.sig[j],shape)$value*pi*2)

}
calculate the log of the Poisson likelihood for each count
lambda<-exp(int + typ[Type0] + (day*datax$glmm.data$JDctr) + st[State0]

+ raneff[Ran0] + l.efa)
dpois.y<-dpois(datax$glmm.data$detections,lambda)

Distance sampling: Methods and applications case studies May 12, 2015 10

logdpois.y<-sum(log(dpois.y))
calculate the log of the normal density for each random effect coefficient
log.dnorm.raneff<-sum(log(dnorm(raneff,0,std.ran)))
adding up the likelihood components
log.lik<-logdpois.y + log.dnorm.raneff + log.e
the function return
return(log.lik)
}

In the case that the user wishes to analyse data from line transects instead of point transects, the calculation
of the effective area needs to be adjusted accordingly (see Section 6.2.2 of the book). Then, the effective strip
half width µlkt is given by

∫ w

0 g(y, z)dy and the effective area by 2 ∗ µlkt ∗ lllkt, where lllkt is the length of
the respective line (stored in datax$glmm.data$line.length). If the interest lies in modelling numbers
of individuals rather than detections, the user can replace the datax$glmm.data$detections in the code
above with datax$glmm.data$individuals.

We note that in contrast with the detection model above, we include a continuous covariate, JDctr, in the count
model. Here, the observed values stored in datax$glmm.data$JDctr are multiplied by the coefficient for
calculating the lambda in the R code above: day*datax$glmm.data$JDctr.

2.2 Defining the prior probabilities for the parameters

In addition to defining the likelihood we need to set up the prior probabilities for our model parameters. If prior knowledge
on the parameters exists, it may be incorporated via the prior distributions. If no prior knowledge on the parameters exists,
uninformative priors, such as uniform, may be placed on all parameters. As we have no prior information on any of the
parameters, we use uniform priors. The important part to consider here is that these need to be wide enough for the chain
to move freely within the parameter space without hitting any of the boundaries. This may be investigated with pilot tuning
(see below).

On the other hand, when using RJMCMC methods, care needs to be taken to not make the boundaries too wide as that might
prevent the chain from moving freely across the model space (see RJMCMC section below for more details).

For the covey case study we have a total of 13 parameters in the combined detection and count model. (See Section Assigning
the parameter values p above). We use the following R code to set up the lower and upper boundaries for the uniform
distributions.

lower and upper limits are given on the un-transformed scale for all parameters
including the scale intercept, shape and RE sd
lolim<-c(50,1,rep(-5,4),-25,rep(-5,5),0.0001)
uplim<-c(1000,10,rep(5,4),3,rep(5,5),3)

We use the following R function to calculate the log of the uniform prior probability for each of the parameters. The argument
coef is the input for the coefficient values and the arguments lo and up allow the input of parameter-specific lower and
upper limits for the uniform distribution. In contrast to using log(dunif(...)), the l.prior function returns a very
small value for the log of the prior probability if the value is outside the boundaries of the distribution. This prevents the
acceptance of a newly proposed parameter value if it is outside the boundaries. In contrast, using log(dunif(...))
returns -Inf if the parameter value is outside the boundaries which may cause the algorithm to crash.

l.prior<-function(coef,lo,up){
l.u.int<-log(dunif(coef,lo,up))
if(any(abs(l.u.int)==Inf))l.u.int<- -100000
sum(l.u.int)

}

If the user wishes to use other prior distributions, the function l.prior can be adjusted accordingly.

Distance sampling: Methods and applications case studies May 12, 2015 11

2.3 Proposal distributions for updating parameters in the MH algorithm

In this section, we set up the proposal distributions for updating the parameters during the MH algorithm. We use normal
proposal distributions where the mean is the current value of the parameter and the standard deviation is defined for each pa-
rameter. The proposal distributions have two purposes. They are used for updating the current parameter values: if, for exam-

ple, at iteration t we wish to update parameter β0 with current value βt
0, we draw a new random sample β′

0 ∼ N
(

βt
0, σ2

β0

)
where σβ0 is the proposal standard deviation for parameter β0.

The proposal distributions are also used to calculate the proposal densities for equation 1 (see above). However, as normal
proposal distributions are symmetric, the proposal density q(βt

0|β′
0) equals q(β′

0|βt
0) and, hence, these cancel when calcu-

lating the acceptance probability for the proposal to update parameter βt
0 in equation 1 above. We use pilot-tuning to define

the parameter-specific proposal standard deviations where we aim to obtain appropriate acceptance rates, i.e., allowing the
chain to move freely in the parameter space Gelman et al. (1996). Increasing the variance on average results in decreasing
acceptance probabilities and vice versa. See section on pilot-tuning below.

proposal distributions
Standard deviations for normal proposal distributions for all parameters:
detection function (1:6) and count model (7:13)
including random effects standard deviation
q.sd<-c(3.5,0.1,0.05,rep(0.03,3),0.02,0.03,0.005,rep(0.02,3),0.04)

2.4 Initial values for the MH updating algorithm

In this step, we set up the initial values for each of the 13 model parameters as well as the random effect coefficients. The initial
parameter values are stored in the array curparam. This array (in combination with the corresponding array newparam)
is used to update the current parameter values throughout the chain. (See the sections on implementing the MH and RJ
algorithms below). The updated parameter values are added to a data frame at the end of each iteration of the chain (see
below).

initial values for the detection function parameters
MCDS with covariates type and state
scale intercept and shape (enter the model on the log-scale)
sig.0<-log(130) # the scale intercept
sha.0<-log(2.5) # shape parameter
type coefficient
sigtr.0<-0.2 # level treat
state coefficients
sigms.0<- 0.61 # MS
signc.0<- 0.66 # NC
sigtn.0<- 0.47 # TN
initial values for count model parameters
int.0<- -13 # intercept
type coefficient
typ.0<- 0.4 # level treat
Julian Date coefficient (covariate JDctr)
day.0<- -0.01 # continuous covariate
state coefficients
stms.0<- 0.014 # state MS
stnc.0<- -0.38 # state NC
sttn.0<- -1.36 # state TN
random effects standard deviation and coefficients
std.ran.0<-log(1)
j=183 # number of sites in covey data (j = length(covey.data$Tj))
set.seed(1234)
raneff<-rnorm(j,0,exp(std.ran.0))
combining the initial values in a single array
for input into the covey.full.bayes.log.lik function

Distance sampling: Methods and applications case studies May 12, 2015 12

curparam<-c(sig.0,sha.0,sigtr.0,sigms.0,signc.0,sigtn.0,
int.0,typ.0,day.0,stms.0,stnc.0,sttn.0,std.ran.0)

2.5 Storing the parameter values for the MH updating algorithm

In this section we set up the data frames which will store the values for the parameters and the random effect coefficients for
each iteration of the chain of the MH updating algorithm. These are large objects due to the length of the chain and the size
of the data frame holding the values for the random effect coefficients, given the number of random effect coefficients. As
the chain will likely take a long time to complete, it is advisable to save these objects periodically while the chain is running.
We deal with this when we set up the MH algorithm.

number of iterations for the MC chain
nt<-1000
param.mat holds the values for all parameters throughout the chain
param.mat<-matrix(NA,nt,length(curparam))
param.mat<-data.frame(param.mat)
names(param.mat)<-c("sig0","sha","sigtr","sigms","signc","sigtn","int","typ","day",

"stms","stnc","sttn","std.ran.0")
param.mat[1,]<-curparam
raneff.mat holds the values for all random effect coefficients throughout the chain
raneff.mat<-matrix(NA,nt,j)
raneff.mat<-data.frame(raneff.mat)
raneff.mat[1,]<-raneff

2.6 The MH updating algorithm

This algorithm involves defining a number of iterations nt and updating each parameter in p from the full likelihood during
each iteration using the acceptance probability from equation 1 above. In the above section Defining the likelihood function,
we learned about the different components of the full likelihood Ln,y|z and how these are implemented in the R function
covey.full.bayes.log.lik. We use this function for updating each of the parameters in p. The function l.prior is
used to calculate the uniform prior probabilities for each of the parameters.

Additionally, as we have a random effect in the count model, we need to update each of the random effect coefficients bl

during each iteration. However, when updating the random effect coefficients, we can take a few shortcuts to make the
algorithm more time-efficient. Firstly, we do not calculate prior probabilities for updating the coefficients (for our models, we
do not place priors on the random effect coefficients). Also, as before we use symmetrical (normal) proposal distributions.
Hence, when updating for example the random effect coefficient for site l = 1, the acceptance probability from equation 1
reduces to:

α(b′
1|bt

1) = min
(

1,
Ln,y|z(b′

1, pt, bt
−1)

Ln,y|z(bt
1, pt, bt

−1)

)
.

Furthermore, we no longer need to calculate the full likelihood for updating each random effect coefficient. We now may
limit the calculations to those parts that make a difference when subtracting the log-likelihood with the current value of the
random effect coefficient loge(Ln,y|z(bt

1, pt, bt
−1)) from the log-likelihood with the updated value of the random effect

coefficient loge(Ln,y|z(b′
1, pt, bt

−1)). Here, we no longer need the likelihood contribution for the detection model (the
component log.e from the overall log-likelihood log.lik in covey.full.bayes.log.lik above) as this component
will remain unaffected when updating any of the bl . For updating a single random effect coefficient, we need to include the
Poisson likelihoods for each count at the respective site as well as the normal density for the coefficient. Hence, following the
example for updating the random effect coefficient b1 for site l = 1, the following part for the overall likelihood is included

in calculating the acceptance probability:
∑K

k=1
∑Tk

t=1 loge

(
λ

n1kt
1kt

exp[−λ1kt]
n1kt!

)
+ loge

(
1√

2πσ2
l

exp
[
− b2

1
2σ2

l

])
. This is

achieved using the function covey.full.bayes.log.lik.raneff.updatewhich updates each of the random effect
coefficients and returns the updated random effect coefficients.

Distance sampling: Methods and applications case studies May 12, 2015 13

############ Metropolis Hastings updating algorithm ############
nt is the number of iterations and is set above
row 1 in param.mat and raneff.mat contains the initial values, so we start with i = 2
We use object t1 to measure how long each iteration takes -- see end of i loop below.
The t1 objects and command lines with Sys.time can be omitted from the algorithm
t1<-unclass(Sys.time())
for (i in 2:nt){

print(i)
updating the 13 model parameters
newparam<-curparam
for (b in c(1:13)){
num<-NA
den<-NA
proposing to update the bth parameter
u<-rnorm(1,0,q.sd[b])
the scale intercept, shape and RE sd are on the log-scale in curparam and
newparam while the boundaries for the priors are not on the log-scale
if(!is.na(match(b,c(1,2,13)))){
newparam[b]<-log(exp(curparam[b])+u)
new.l.prior<-l.prior(exp(newparam[b]),lolim[b],uplim[b])
cur.l.prior<-l.prior(exp(curparam[b]),lolim[b],uplim[b])

}
else{
newparam[b]<-curparam[b]+u
new.l.prior<-l.prior(newparam[b],lolim[b],uplim[b])
cur.l.prior<-l.prior(curparam[b],lolim[b],uplim[b])

}
num<-covey.full.bayes.log.lik(newparam,raneff,covey.data) + new.l.prior
den<-covey.full.bayes.log.lik(curparam,raneff,covey.data) + cur.l.prior
A<-min(1,exp(num-den))
V<-runif(1)
ifelse(V<=A,curparam[b]<-newparam[b],newparam[b]<-curparam[b])

}
storing the updated parameter values
param.mat[i,]<-curparam
updating the random effect coefficients
raneff<-covey.full.bayes.log.lik.raneff.update(curparam, raneff, covey.data)
storing the updated random effect coefficients
raneff.mat[i,]<-raneff
saving the parameter matrices every 5000 iterations
if(!is.na(match(i,seq(0,nt,5000))==T)){

save(param.mat,file='param.mat.RData')
save(raneff.mat,file='raneff.mat.RData')

}
The next 2 lines allow you to measure the time each iteration takes to complete.
They can be omitted from the algorithm
print(paste("this iteration took ",round(unclass(Sys.time())-t1,2)," seconds",sep=""))
t1<-unclass(Sys.time())
this next if statement allows us to periodically check the trace plots
without stopping the algorithm (which is handy for pilot tuning)
if(!is.na(match(i,seq(0,nt,100))==T)){

par(mfrow=c(2,2))
for (k in 1:13){

plot(param.mat[1:i,k],xlab=k,t='l',main=i)
}

}
}# end of i loop

Distance sampling: Methods and applications case studies May 12, 2015 14

2.7 Pilot tuning the MH updating algorithm

For an MH updating algorithm, pilot tuning involves ensuring that the parameter space is explored freely for each parameter.
This can be done using trace plots which may be produced at any iteration i with the following R code.

The following code will only work if the MH algorithm has run for several iterations.
We recommend running at least 100 iterations.
Producing trace plots for all 13 parameters for iterations 1:i
par(mfrow=c(3,2))
for (b in 1:13){
plot(param.mat[1:i,b],t='l',xlab="Iteration",main=paste("Parameter ",b,sep=""),ylab="")}

For our case study, we use normal proposal distributions which use the current value of the respective parameter as the mean
and have parameter-specific proposal variances (defined in the section on proposal distributions above). Pilot tuning may
involve adjusting the standard deviations of the proposal distributions (defined in the array q.sd above). We show two sets
of trace plots for the same selection of parameters in p - after pilot tuning (Figure 1) presenting the desired pattern of quick
up-and-down movements and before pilot tuning (Figure 2) presenting the undesired pattern of a ‘skyscraper landscape’. For
Figure 1, the proposal standard deviations were set to:

The user does not need to run this part for the exercise
proposal standard deviations after pilot tuning
q.sd<-c(3.5,0.1,0.05,rep(0.03,3),0.02,0.03,0.005,rep(0.02,3),0.04)

For Figure 2, the proposal standard deviations were set to:

The user does not need to run this part for the exercise
proposal standard deviations before pilot tuning
q.sd<-c(12,rep(0.3,7),0.03,rep(0.3,4))

Figure 1. Trace plots for iterations 1:1000 for parameters 7:12 after pilot tuning. Parameters 7:12 correspond to the count
model parameters (except the random effects standard deviation).

Figure 2. Trace plots for iterations 1:554 for parameters 7:12 before pilot tuning with larger proposal standard deviations
compared to Figure 1. Parameters 7:12 correspond to the count model parameters (except the random effects standard
deviation).

In addition, we need to ensure that the potential values that each parameter in p can take are not limited by the boundaries
of the uniform prior distributions. This can also be checked using the trace plots. Figure 3 shows the trace plot of parameter 1
when the upper boundary of its uniform prior was set to 250 before pilot tuning (loge(250) ≈ 5.52). It is clear that the upper
boundary was too low for this parameter and that the chain was not moving freely. We note that artificially constraining one
parameter may affect other parameters as well.

Figure 3. Trace plot for parameter 1, the intercept of the scale parameter for the detection model before pilot tuning when
the upper boundary of the uniform prior probability distribution for this parameter was set too low.

2.7.1 Inference from an MH updating algorithm

2.7.1.1 Inference on parameters from an MH updating algorithm We draw inference on parameters by obtaining summary
statistics of the marginal posterior distributions. For this purpose, we use the parameter values stored in param.ma after
completing the MH algorithm above for all nt = 100000 iterations. For the purpose of the exercise, rather than waiting for
the 10000 iterations to complete, the results can also be uploaded into the workspace using:

load("param.mat.rdata")

Using param.mat, we calculate the mean, standard deviation and central 95% credible intervals. We use the first 9999
iterations for the burn-in phase and omit these. These summary statistics may be obtained using the following R code:

Distance sampling: Methods and applications case studies May 12, 2015 15

means
kable(t(round(apply(param.mat[10000:nt,1:12],2,mean),4)))

sig0 sha sigtr sigms signc sigtn int typ day stms stnc sttn

5.8481 1.2752 -0.2457 -0.0243 0.0119 -0.1237 -13.1646 0.6761 -0.0228 -0.3818 -1.5033 -1.1605

standard deviations
kable(t(round(apply(param.mat[10000:nt,1:12],2,sd),4)))

sig0 sha sigtr sigms signc sigtn int typ day stms stnc sttn

0.0548 0.1003 0.0628 0.0613 0.0811 0.0904 0.1327 0.1026 0.0038 0.2002 0.1973 0.2512

95% credible intervals
kable(round(apply(param.mat[10000:nt,1:6],2,quantile,probs=c(0.025,0.975)),4))

sig0 sha sigtr sigms signc sigtn

2.5% 5.7435 1.0765 -0.3805 -0.1416 -0.1337 -0.2878
97.5% 5.9532 1.4713 -0.1241 0.0986 0.1784 0.0753

kable(round(apply(param.mat[10000:nt,7:12],2,quantile,probs=c(0.025,0.975)),4))

int typ day stms stnc sttn

2.5% -13.4671 0.4737 -0.0300 -0.7444 -1.8819 -1.7523
97.5% -12.9332 0.8727 -0.0154 -0.0042 -1.1377 -0.6604

for the random effects standard deviation we convert the values back from the log-scale
mean
kable(t(round(mean(exp(param.mat[10000:nt,13])),4)))

0.733

standard deviation
kable(t(round(sd(exp(param.mat[10000:nt,13])),4)))

0.0656

95% credible intervals
kable(t(round(quantile(exp(param.mat[10000:nt,13]),probs=c(0.025,0.975)),4)))

2.5% 97.5%

0.6062 0.8635

We can plot the distribution for each of the parameters using the following R code:

Distance sampling: Methods and applications case studies May 12, 2015 16

par(mfrow=c(3,2))
for (b in 1:12){

plot(density(param.mat[10000:nt,b]),t='l',
main=paste("Parameter ",b,sep=""),
ylab="Density",xlab="Parameter value")

}

5.70 5.75 5.80 5.85 5.90 5.95 6.00

0
4

Parameter 1

Parameter value

D
en

si
ty

1.0 1.2 1.4 1.6

0
3

Parameter 2

Parameter value

D
en

si
ty

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

0
6

Parameter 3

Parameter value

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2

0
4

Parameter 4

Parameter value

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2 0.3

0
3

Parameter 5

Parameter value

D
en

si
ty

−0.4 −0.2 0.0 0.2

0
3

Parameter 6

Parameter value

D
en

si
ty

Distance sampling: Methods and applications case studies May 12, 2015 17

−13.6 −13.4 −13.2 −13.0 −12.8

0.
0

3.
0

Parameter 7

Parameter value

D
en

si
ty

0.4 0.6 0.8 1.0

0
3

Parameter 8

Parameter value

D
en

si
ty

−0.035 −0.025 −0.015

0
80

Parameter 9

Parameter value

D
en

si
ty

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

Parameter 10

Parameter value

D
en

si
ty

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0

0.
0

2.
0

Parameter 11

Parameter value

D
en

si
ty

−2.0 −1.5 −1.0 −0.5

0.
0

2.
5

Parameter 12

Parameter value

D
en

si
ty

for the random effects standard deviation we convert the values back from the log-scale
before plotting
plot(density(exp(param.mat[10000:nt,13])),t='l',

main=paste("Parameter ",13,sep=""),
ylab="Density",xlab="Parameter value")

Distance sampling: Methods and applications case studies May 12, 2015 18

0.5 0.6 0.7 0.8 0.9 1.0

0
4

Parameter 13

Parameter value

D
en

si
ty

The parameter of interest for this study was the coefficient for level “TREAT” for the Type covariate in the count model.
The mean estimate for this parameter was 0.68 (SD = 0.103, 95% central credible intervals = {0.47, 0.87}). Remem-
bering that this parameter entered the model for the expected value λlkt on the log-scale (equation 4 from above:

λlkt = exp
(∑Q

q=1 xqkltβq + bl + loge(νlkt)
)

) we conclude that covey densities were 97.66 % higher on treated fields

compared to control fields (100 × [exp(0.67) − 1]).

2.7.2 Inference on plot density from an MH updating algorithm

If we wish to draw inference on plot density, we can treat plot density as a parameter and obtain similar summary statistics
as for the parameters p. For this purpose, we use the parameter values from the count model stored in param.mat and
calculate the expected density for each iteration (excluding the burn-in phase). We note that while λlkt (equation 4) models

the expected counts, exp
(∑Q

q=1 xqkltβq + bl

)
from the λlkt model (i.e., without the effective area loge(νlkt)) models

the densities (i.e., number of coveys per m2).

We can obtain posterior distributions of plot density for any given combination of covariates (e.g., control vs treatment plots).
We may wish, for example, to draw inference on a baseline plot density where each covariate value is set to their baseline level
(level for Type = “CONTROL”, JDctr = 0, level for State = “MO”). We further need to add a contribution from the random effect:
0.5 × σ2

l . Hence, the expected baseline density Dbl can be expressed as: Dbl = exp(β1 + (0.5 × σ2
l))), where β1 is the

intercept for the count model and σl is the random effects standard deviation. We can calculate the Dbl for each iteration
either during the MH-update by including the appropriate code or calculate these after the MH algorithm has completed.
Regardless, we need to consider that the unit for distance measurements were metres (covey.data$dis.unit = m). As
the effective area also enters the model for λ in m2, the units for the density estimates from the count model are m2. We
can convert the density estimates from Dbl/m2 to Dbl/km2 by including the appropriate code:

Dbl<-array(NA,nt)
calculate the baseline density
omit the burn-in
for (i in 10000:nt){
Dbl[i]<-exp(param.mat[i,7]+(0.5*exp(param.mat[i,13])^2))

}
Dbl<-Dbl*1000*1000

Distance sampling: Methods and applications case studies May 12, 2015 19

Summary statistics for the baseline density can now be obtained using:

the posterior mean, standard deviation and central credible intervals for
baseline density after omitting the burn-in
(rounded to 2 decimal points)
round(mean(Dbl[10000:nt]),2)

[1] 2.54

round(sd(Dbl[10000:nt]),2)

[1] 0.33

round(quantile(Dbl[10000:nt],prob=c(0.025,0.975)),2)

2.5% 97.5%
1.87 3.18

We conclude that the baseline density of northern bobwhite coveys was 2.54 coveys per km2 (SD = 0.33, 95% central
credible intervals = {1.87, 3.183}).

3 Setting up a reversible jump MCMC algorithm

In this section, we use the methods described in Section 8.4.2 of the book. We build upon the previous example and include
model selection as part of the inference. Now, instead of conditioning on the full model being the correct model as in the MH
algorithm above, we include a reversible jump (RJ) step at each iteration where we propose to move to a different model. Now
each iteration consists of a proposal to update the model (the RJ step) and a proposal to update the parameters of the current
model (the MH step). For the MH step we use an algorithm similar to the above except that only parameters contained in
the current model are updated. The RJ step is described in more detail in the following section.

However, setting up an RJMCMC updating algorithm involves a few additional steps compared to the MH algorithm above.
The steps for the RJMCMC algorithm include:

1. Defining the likelihood function
2. Defining the prior probabilities for the parameters
3. Proposal distributions for the MH step and the RJ step
4. Initial model and parameter values for the RJMCMC algorithm
5. Storing the parameter values for the RJMCMC algorithm
6. The RJMCMC algorithm
7. Pilot tuning the RJMCMC algorithm

In this section, we provide the functions and R code necessary to implement these steps. In addition, we describe how to
obtain summary statistics of the posterior model probabilities and posterior distributions of parameters and plot density. We
begin with the details for the RJ step.

3.1 The RJ step

The RJ step at each iteration involves proposing to add or delete each of the available covariates for the detection and count
models depending on whether they are in the current model or not. If, for example, at iteration t covariate State is not
contained in the detection model, we propose to add it. We use m to denote the current model with parameters p (not
including State in the detection model) and m′ to denote the newly proposed model (including State in the detection model).
This involves drawing a random sample for each of the coefficients of the three levels of State, say β′

2, β′
3, β′

4, (State has four
levels; however, the first level “MO” is absorbed in the intercept). We use the respective proposal distributions for drawing

Distance sampling: Methods and applications case studies May 12, 2015 20

the samples (e.g., β′
2 ∼ N(µβ2 , σ2

β2
) where µβ2 and σ2

β2
are the parameter-specific proposal mean and variance). We

use the identity function as the bijective function (similar to equation 8.41 of the book) where all other parameters p of the
current model m are set equal to the corresponding parameters in p′ and the additional parameters for model m′ are:

u2 = β′
2

u3 = β′
3

u4 = β′
4 ;

for this particular model move. We then calculate the acceptance probability A(m′|m) for this proposed move using equa-
tion 5 (equivalent to equation 8.42 from Section 8.4.2 of the book). However, for our proposed move, this equation can
be simplified. As we use the identity function as the bijective function, the Jacobian |J | equals 1. Furthermore, as we con-
sider all model probabilities equally likely, P (m|m′) and P (m′|m) as well as p(m) and p(m′) cancel in equation 5. This
leaves calculating the likelihoods (for the newly proposed model Ln,y|z(p′, m′) as well as the current model Ln,y|z(p, m)),
the proposal densities for the new parameters (q (u2) q (u3) q (u4)) and the prior probabilities for the new parameters
(p(β′

2)p(β′
3)p(β′

4)):

A(m′|m) =
Ln,y|z(p′, m′)p(β′

2)p(β′
3)p(β′

4)
Ln,y|z(p, m)q (u2) q (u3) q (u4)

. (5)

We show the R code for calculating the acceptance probabilities in the section The RJMCMC algorithm below.

3.2 Defining the likelihood function for the RJMCMC algorithm

For the RJMCMC algorithm, we use the same likelihood function covey.full.bayes.log.lik (including the
f.haz.function.pt) as for the MH algorithm described above (see Section Defining the likelihood function above)
despite the fact that now the current model may contain fewer parameters than the full model. Therefore, it is important
that the values for the respective model coefficients listed in the array p are in the same position as they would be in the
full model. If, for example, the detection model contains the covariate State but not Type, the third position in curdetparam
must be 0 while positions 1,2,4,5,6 contain the current values for the scale intercept, the shape parameter and the state
coefficients. In comparison to the MH algorithm, we store the current parameter values of the detection and count
models in separate arrays, curdetparam and curcountparam – mainly as this makes it easier to keep track of which
detection model and which count model we are currently in (see below for details). However, as the likelihood function
covey.full.bayes.log.lik expects one array of parameter values containing the detection and count model
parameters, we combine these using, e.g., c(curdetparam,curcountparam).

If the user wishes to adjust the likelihood function for their RJMCMC algorithm, we recommend that they follow
this scheme of defining the function for the full model and setting parameter values for covariates not contained
in the current model to zero – provided that all possible models are nested within the full model. In the case
that moves between non-nested models should be included in the algorithm, e.g. between the half-normal
and the hazard-rate detection model, the likelihood function may require an additional argument that allows
switching between detection models.

In the case that the user wants to analyse binned distance data, the same modifications apply as described
above. We note, however, that moves between models where distances are analysed as exact and models
where distances are analysed as binned are not allowed in an RJMCMC algorithm. This is because the data
change between the two approaches.

3.3 Prior probability distributions

We consider all models equally likely. Hence, the probability P (m′|m) of proposing to move to model m′ given that the
chain is in model m and the probability P (m|m′) for the reverse step of proposing to move to model m given that the chain
is in model m′ are equal and cancel in equation 8.42 of the book.

As for the MH algorithm above, we place uniform priors on all model parameters and use the same function l.prior to
calculate the log of the prior probabilities. The lower and upper boundaries for the uniform prior distributions for each of the
parameters are the same as for the MH algorithm; however, we define the boundaries separately for the detection function
and count models to be consistent with the format of curdetparam and curcountparam (i.e., arrays of length 6 and 7
for the full detection and count models, respectively).

Distance sampling: Methods and applications case studies May 12, 2015 21

setting the lower and upper limits for the uniform prior probability distributions
detlolim<-c(50,1,rep(-5,4))
detuplim<-c(1000,10,rep(5,4))
countlolim<-c(-25,rep(-5,5),0.0001)
countuplim<-c(3,rep(5,5),3)

3.4 Proposal distributions for the RJ step

As for the MH algorithm, we use normal proposal distributions. However, for the RJMCMC algorithm, we need two sets
of proposal distributions: one set for the RJ step and another set for the MH step. The proposal distributions for the RJ
step are used to draw random samples for new model coefficients. They are also used to calculate proposal densities for
calculating the acceptance probabilities using equation 5. We note that certain parameters are always in the model and do
not need a proposal distribution for the RJ step. However, for consistency and simplicity (see below), we define these as well.
These parameters include the scale intercept and shape parameter of the hazard-rate detection model and the intercept and
random effects standard deviation of the count model.

The proposal distributions for the MH step are the same as for the MH algorithm above with zero means and parameter-
specific standard deviations. However, we use the same format for storing the standard deviations as for curdetparam
and curcountparam.

proposal distributions for parameters in the detection and count model
for RJ step: proposals of new parameters
detprop.mean<-c(356.60, 3.74, 0.23, -0.06, -0.03, -0.18)
countprop.mean<-c(-13.20, 0.33, -0.023, -0.43, -1.46, -1.30, 0.70)
detprop.sd<-c(1.41, 0.84, rep(0.05,4))
countprop.sd<-c(0.3, 0.1, 0.01, 0.2, 0.2, 0.2, 0.3)
for MH step: proposals to update current parameters
detq.sd<-c(3.5,0.1,0.05,rep(0.03,3))
countq.sd<-c(0.02,0.03,0.005,rep(0.02,3),0.04)

3.5 Storing the parameter values and model choices for each iteration

This is more complex than for the MH algorithm, as we need not only to store the values for the parameters and random
effect coefficients during each iteration, but also to keep track of which model was chosen for each iteration and which
parameters inp are switched on and off. For this purpose, we set up model indicator matrices, det.list andcount.list,
which indicate what parameters are switched on for each possible covariate combination. These indicator matrices contain
combinations of 0 and 1 in each row where the row number refers to the model number and 1 indicates that the respective
parameter (indicated by column names) is switched on for the respective model. These will help us store the model choices
for the detection and count models for each iteration as integer numbers in the vectors det.model and count.model,
respectively.

array that will keep track of the model choice (stored as an integer number
to the model number (row number) from det.list and count.list below)
det.model<-array(NA,nt)
count.model<-array(NA,nt)
we need to know which model contains which parameters
row number indicates the model number
column names indicate which parameters are switched on or off for the respective model
0: parameter is switched off
1: parameter is switched on
det.list<-matrix(0,4,6) # 2 covariates: 4 possible models
count.list<-matrix(0,8,7) # 3 covariates: 8 possible models
columns: scale intercept, shape, type coef level TREAT, state coef levels MS, NC, TN
colnames(det.list)<-c("scale.int","shape","sig.tr","sig.ms","sig.nc","sig.tn")
columns: intercept, type coef level TREAT, JDctr coef, state coef levels MS, NC, TN
colnames(count.list)<-c("int","type.tr","day","st.ms","st.nc","st.tn","sd.ran")

Distance sampling: Methods and applications case studies May 12, 2015 22

all detection models contain the scale intercept and shape parameter (hazard rate)
det.list[1,]<-c(1,1,rep(0,4)) # global model with no covariates
det.list[2,]<-c(1,1,1,rep(0,3)) # mcds with type
det.list[3,]<-c(1,1,0,rep(1,3)) # mcds with state
det.list[4,]<-c(rep(1,6)) # mcds with type and state
all count models contain the intercept and RE sd
count.list[1,]<-c(1,rep(0,5),1) # no covariates
count.list[2,]<-c(1,1,rep(0,4),1) # with type
count.list[3,]<-c(1,0,1,rep(0,3),1) # with JDctr
count.list[4,]<-c(1,0,0,rep(1,3),1) # with state
count.list[5,]<-c(1,1,1,rep(0,3),1) # with type and JDctr
count.list[6,]<-c(1,1,0,rep(1,3),1) # with type and state
count.list[7,]<-c(1,0,rep(1,4),1) # with JDctr and state
count.list[8,]<-c(rep(1,7)) # with type, JDctr and state
data frames for storing the parameter values
detparam.mat<-matrix(NA,nt,6)
detparam.mat<-data.frame(detparam.mat)
countparam.mat<-matrix(NA,nt,7)
countparam.mat<-data.frame(countparam.mat)
these obtain the same column names as det.list and count.list
colnames(detparam.mat)<-c("scale.int","shape","sig.tr","sig.ms","sig.nc","sig.tn")
colnames(countparam.mat)<-c("int","type.tr","day","st.ms","st.nc","st.tn","sd.ran")
data frame for storing the random effect coefficients
raneff.mat<-matrix(NA,nt,183) # 183 sites
raneff.mat<-data.frame(raneff.mat)

3.6 Setting initial models and parameter values for the RJMCMC algorithm

In contrast to the MH algorithm above where we conditioned on the full model, we will begin our chain with the most parsi-
monious model options: the global hazard-rate detection function without any covariates (detection model 1) and a count
model containing no covariates (count model 1). Hence, we need set up starting values for the model parameters including
the scale intercept and shape parameter of the hazard-rate detection model and the intercept and random effects standard
deviation of the count model. Other options for starting the chain include beginning the chain with the full models (models
4 and 8 for the detection and count models) or drawing the respective model numbers by chance.

The current model choices for the detection and count models are stored in curdetmodel and curcountmodel which
are updated at each iteration. The current parameter values are stored in curdetparam and curcountparam which are
updated at each iteration in combination with newdetparam and newcountparam. As for the MH algorithm, we store the
current values for the random effect coefficients in raneff.

Setting the initial models
global detection function and intercept + RE sd count model
curdetmodel<-1
curcountmodel<-1
det.model[1]<-curdetmodel
count.model[1]<-curcountmodel
curdetlist and curcountlist will tell you which parameters are
switched on for the current model
curdetlist<-det.list[curdetmodel,]
curcountlist<-count.list[curdetmodel,]
Setting up initial values
model 1 for the detection function only contains two parameters:
scale intercept and shape (which are both on the log-scale)
sig.0<-log(130)
sha.0<-log(2.5)
initial values for count model parameters
int.0<- -13 # intercept

Distance sampling: Methods and applications case studies May 12, 2015 23

std.ran.0<-log(1) # random effects standard deviation
j=183 # number of sites in the covey data
set.seed(1234)
b0<-rnorm(j,0,exp(std.ran.0))
curdetparam always needs to be of length 6 and curcountparam of length 7
as the likelihood function covey.full.bayes.log.lik expects an array
of length 13 for argument p
curdetparam<-array(0,6)
curdetparam[1:2]<-c(sig.0,sha.0)
curcountparam<-array(0,7)
curcountparam[1]<-c(int.0)
curcountparam[7]<-c(std.ran.0)
raneff<-b0
detparam.mat[1,]<-curdetparam
countparam.mat[1,]<-curcountparam
raneff.mat[1,]<-raneff

3.7 The RJMCMC algorithm

As for the MH algorithm, we use the function covey.full.bayes.log.lik.raneff.update to update the random
effect coefficients. (See Section The MH updating algorithm above for more details about this function). In the following
algorithm, we begin each iteration with the RJ step where we propose to update the current model. Here, we cycle through
each covariate in the detection and count models and propose to add or delete it depending on whether it is in the current
model or not. The potential covariates are Type and State for the detection model and Type, JDctr (centred Julian date) and
State for the count model. Cycling through each of these covariates completes the RJ step. Note that Type and State are
factor covariates with two and four levels, respectively, and JDctr is a continuous covariate.

Following the RJ step is the MH step where we propose to update current model parameters. Here we cycle through each
of the current parameters and propose to update it. At the completion of the RJ step, we store current model choices (de-
tection and count model) in the respective data frames (det.model and count.model). At the completion of the MH
step, we store the current parameter values and random effect coefficients in the respective data frames (detparam.mat,
countparam.mat and raneff.mat). We note that in the case a parameter is not in the current model, the parameter
value will be stored as 0. Using the information stored in det.list or count.list in combination with the model choice
stored in det.model or count.model allows us to distinguish these 0s from true zeros for a parameter value.

nt is the number of iterations and is set above
row 1 in detparam.mat, coutparam.mat and raneff.mat contains the initial values, so we
start with i = 2.
We use object t1 to measure how long each iteration takes -- see end of i loop below.
The t1 objects and command lines with Sys.time can be omitted from the algorithm
t1<-unclass(Sys.time())
for (i in 2:nt){

print(i)
########################## RJ step ##########################
method: propose to add or delete each covariate depending on
whether it is in the current model
newdetlist<-curdetlist
newdetparam<-curdetparam
newcountlist<-curcountlist
newcountparam<-curcountparam
########################### detection function parameters
the scale intercept and shape parameters are always in the model
covariate type
check if it is in the current model:
propose to add it if it is not in the current model
if(curdetlist[3]==0){
newdetlist[3]<-1

Distance sampling: Methods and applications case studies May 12, 2015 24

newdetparam[3]<-rnorm(1,detprop.mean[3],detprop.sd[3])
num<-NA
den<-NA
the prior probabilities
new.l.prior<-l.prior(newdetparam[3],detlolim[3],detuplim[3])
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
prop.dens<-log(dnorm(newdetparam[3],detprop.mean[3],detprop.sd[3]))
numerator and denominator in equation 5
num<-new.lik+new.l.prior
den<-cur.lik+prop.dens

}
propose to delete it if it is in the current model
else{
newdetlist[3]<-0
newdetparam[3]<-0
num<-NA
den<-NA
the prior probabilities
cur.l.prior<-l.prior(curdetparam[3],detlolim[3],detuplim[3])
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-log(dnorm(curdetparam[3],detprop.mean[3],detprop.sd[3]))
numerator and denominator in equation 5
num<-new.lik+prop.dens
den<-cur.lik+cur.l.prior

}
A<-min(1,exp(num-den))
V<-runif(1)
if(V<=A){
curdetparam[3]<-newdetparam[3]
curdetlist[3]<-newdetlist[3]

}
else{
newdetparam[3]<-curdetparam[3]
newdetlist[3]<-curdetlist[3]

}
covariate state
check if it is in the current model:
propose to add it if it is not in the current model
if(curdetlist[4]==0){
newdetlist[4:6]<-1
newdetparam[4:6]<-rnorm(3,detprop.mean[4:6],detprop.sd[4:6])
num<-NA
den<-NA
the prior probabilities
new.l.prior<-sum(l.prior(newdetparam[4:6],detlolim[4:6],detuplim[4:6]))
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-sum(log(dnorm(newdetparam[4:6],detprop.mean[4:6],detprop.sd[4:6])))
numerator and denominator in equation 5
num<-new.lik+new.l.prior

Distance sampling: Methods and applications case studies May 12, 2015 25

den<-cur.lik+prop.dens
}
propose to delete it if it is in the current model
else{
newdetlist[4:6]<-0
newdetparam[4:6]<-0
num<-NA
den<-NA
the prior probabilities
cur.l.prior<-sum(l.prior(curdetparam[4:6],detlolim[4:6],detuplim[4:6]))
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-sum(log(dnorm(curdetparam[4:6],detprop.mean[4:6],detprop.sd[4:6])))
numerator and denominator in equation 5
num<-new.lik+prop.dens
den<-cur.lik+cur.l.prior

}
A<-min(1,exp(num-den))
V<-runif(1)
if(V<=A){
curdetparam[4:6]<-newdetparam[4:6]
curdetlist[4:6]<-newdetlist[4:6]

}
else{
newdetparam[4:6]<-curdetparam[4:6]
newdetlist[4:6]<-curdetlist[4:6]

}
count model parameters
the intercept and RE sd are always in the model
covariate type
check if it is in the current model:
propose to add it if it is not in the current model
if(curcountlist[2]==0){
newcountlist[2]<-1
newcountparam[2]<-rnorm(1,countprop.mean[2],countprop.sd[2])
num<-NA
den<-NA
the prior probabilities
new.l.prior<-l.prior(newcountparam[2],countlolim[2],countuplim[2])
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-log(dnorm(newcountparam[2],countprop.mean[2],countprop.sd[2]))
numerator and denominator in equation 5
num<-new.lik+new.l.prior
den<-cur.lik+prop.dens

}
propose to delete it if it is in the current model
else{
newcountlist[2]<-0
newcountparam[2]<-0
num<-NA
den<-NA
the prior probabilities
cur.l.prior<-l.prior(curcountparam[2],countlolim[2],countuplim[2])

Distance sampling: Methods and applications case studies May 12, 2015 26

likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-log(dnorm(curcountparam[2],countprop.mean[2],countprop.sd[2]))
numerator and denominator in equation 5
num<-new.lik+prop.dens
den<-cur.lik+cur.l.prior

}
A<-min(1,exp(num-den))
V<-runif(1)
if(V<=A){
curcountparam[2]<-newcountparam[2]
curcountlist[2]<-newcountlist[2]

}
else{
newcountparam[2]<-curcountparam[2]
newcountlist[2]<-curcountlist[2]

}
covariate JDctr (Julian date)
check if it is in the current model:
propose to add it if it is not in the current model
if(curcountlist[3]==0){
newcountlist[3]<-1
newcountparam[3]<-rnorm(1,countprop.mean[3],countprop.sd[3])
num<-NA
den<-NA
the prior probabilities
new.l.prior<-l.prior(newcountparam[3],countlolim[3],countuplim[3])
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-log(dnorm(newcountparam[3],countprop.mean[3],countprop.sd[3]))
numerator and denominator in equation 5
num<-new.lik+new.l.prior
den<-cur.lik+prop.dens

}
propose to delete it if it is in the current model
else{
newcountlist[3]<-0
newcountparam[3]<-0
num<-NA
den<-NA
the prior probabilities
cur.l.prior<-l.prior(curcountparam[3],countlolim[3],countuplim[3])
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-log(dnorm(curcountparam[3],countprop.mean[3],countprop.sd[3]))
numerator and denominator in equation 5
num<-new.lik+prop.dens
den<-cur.lik+cur.l.prior

}
A<-min(1,exp(num-den))
V<-runif(1)
if(V<=A){

Distance sampling: Methods and applications case studies May 12, 2015 27

curcountparam[3]<-newcountparam[3]
curcountlist[3]<-newcountlist[3]

}
else{
newcountparam[3]<-curcountparam[3]
newcountlist[3]<-curcountlist[3]

}
covariate state
check if it is in the current model:
propose to add it if it is not in the current model
if(curcountlist[4]==0){
newcountlist[4:6]<-1
newcountparam[4:6]<-rnorm(3,countprop.mean[4:6],countprop.sd[4:6])
num<-NA
den<-NA
the prior probabilities
new.l.prior<-sum(l.prior(newcountparam[4:6],countlolim[4:6],countuplim[4:6]))
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-sum(log(dnorm(newcountparam[4:6],countprop.mean[4:6],countprop.sd[4:6])))
numerator and denominator in equation 5
num<-new.lik+new.l.prior
den<-cur.lik+prop.dens

}
propose to delete it if it is in the current model
else{
newcountlist[4:6]<-0
newcountparam[4:6]<-0
num<-NA
den<-NA
the prior probabilities
cur.l.prior<-sum(l.prior(curcountparam[4:6],countlolim[4:6],countuplim[4:6]))
likelihood
new.lik<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)
cur.lik<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)
proposal density
prop.dens<-sum(log(dnorm(curcountparam[4:6],countprop.mean[4:6],countprop.sd[4:6])))
numerator and denominator in equation 5
num<-new.lik+prop.dens
den<-cur.lik+cur.l.prior

}
A<-min(1,exp(num-den))
V<-runif(1)
if(V<=A){
curcountparam[4:6]<-newcountparam[4:6]
curcountlist[4:6]<-newcountlist[4:6]

}
else{
newcountparam[4:6]<-curcountparam[4:6]
newcountlist[4:6]<-curcountlist[4:6]

}
determining the current models and storing them
curdetmodel<-match.function(curdetlist,det.list)
curcountmodel<-match.function(curcountlist,count.list)
det.model[i]<-curdetmodel

Distance sampling: Methods and applications case studies May 12, 2015 28

count.model[i]<-curcountmodel
################################ MH step ################################
newdetparam<-curdetparam
newcountparam<-curcountparam
updating current detection function parameters
for (b in which(curdetlist==1)){
num<-NA
den<-NA
proposing to update the bth parameter
u<-rnorm(1,0,detq.sd[b])
remembering that scale intercept and shape are on the log-scale
if(!is.na(match(b,c(1,2)))){
newdetparam[b]<-log(exp(curdetparam[b])+u)
new.l.prior<-l.prior(exp(newdetparam[b]),detlolim[b],detuplim[b])
cur.l.prior<-l.prior(exp(curdetparam[b]),detlolim[b],detuplim[b])

}
else{
newdetparam[b]<-curdetparam[b]+u
new.l.prior<-l.prior(newdetparam[b],detlolim[b],detuplim[b])
cur.l.prior<-l.prior(curdetparam[b],detlolim[b],detuplim[b])

}
num<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)

+ new.l.prior
den<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)

+ cur.l.prior
A<-min(1,exp(num-den))
V<-runif(1)
ifelse(V<=A,curdetparam[b]<-newdetparam[b],newdetparam[b]<-curdetparam[b])

}
updating current count model parameters
for (b in which(curcountlist==1)){
num<-NA
den<-NA
proposing to update the bth parameter
u<-rnorm(1,0,countq.sd[b])
if(b==length(curcountparam)){newcountparam[b]<-log(exp(curcountparam[b])+u)
new.l.prior<-l.prior(exp(newcountparam[b]),countlolim[b],countuplim[b])
cur.l.prior<-l.prior(exp(curcountparam[b]),countlolim[b],countuplim[b])

}
else{
newcountparam[b]<-curcountparam[b]+u
new.l.prior<-l.prior(newcountparam[b],countlolim[b],countuplim[b])
cur.l.prior<-l.prior(curcountparam[b],countlolim[b],countuplim[b])

}
num<-covey.full.bayes.log.lik(c(newdetparam,newcountparam),raneff,covey.data)

+ new.l.prior
den<-covey.full.bayes.log.lik(c(curdetparam,curcountparam),raneff,covey.data)

+ cur.l.prior
A<-min(1,exp(num-den))
V<-runif(1)
ifelse(V<=A,curcountparam[b]<-newcountparam[b],newcountparam[b]<-curcountparam[b])

}
detparam.mat[i,]<-curdetparam
countparam.mat[i,]<-curcountparam
updating the random effect coefficients
raneff<-covey.full.bayes.log.lik.raneff.update(c(curdetparam,curcountparam),

raneff, covey.data)

Distance sampling: Methods and applications case studies May 12, 2015 29

raneff.mat[i,]<-raneff
saving the parameter matrices every 5000 iterations
if(!is.na(match(i,seq(0,nt,5000))==T)){

save(detparam.mat,file='detparam.mat.RData')
save(countparam.mat,file='countparam.mat.RData')
save(raneff.mat,file='raneff.mat.RData')
save(det.model,file="det.model.RData")
save(count.model,file="count.model.RData")

}
print(paste("this iteration took ",round(unclass(Sys.time())-t1,2)," seconds",sep=""))
t1<-unclass(Sys.time())

The following lines allow you to check on if the chain is moving freely across the
parameter space every 500 iterations without stopping the algorithm
if(!is.na(match(i,seq(0,nt,500))==T)){
par(mfrow=c(2,2))
for (k in 1:13){
plot(param.mat[1:i,k],xlab=k,t='l',main=i)
}
}

The following lines allow you to check on model mixing every 500 iterations without
stopping the algorithm
if(!is.na(match(i,seq(0,nt,500))==T)){
plot(det.model[1:i],t='l')
plot(count.model[1:i],t='l')
print(table(det.model))
print(table(count.model))
}
}# end of i loop

3.8 Pilot tuning the RJMCMC algorithm

For pilot tuning the within-model moves (the MH step), i.e. adjusting prior and proposal distributions, refer to the section Pilot
tuning the MH updating algorithm above.

Pilot tuning the between-model move (the RJ step), may involve adjusting the proposal distributions for the RJ step and the
prior distributions. Decreasing the standard deviation of the normal proposal distribution for a parameter and/or widening
the boundaries of a uniform prior distribution may decrease the acceptance probability of a proposal to include the respective
parameter in the current model.

Potential problems with respect to model mixing for random effect models may occur when the acceptance of a covariate
into a model is prevented because the random effect coefficients have absorbed the effect of the covariate. This may be
diagnosed by plotting individual means of random effect coefficient values from the chain stored in raneff.mat. One potential
method for preventing this is to use hierarchical centering (Oedekoven et al. submitted)).

One strategy to define the mean and standard deviations of the normal proposal distributions for the RJ step is
to use the point estimates and standard errors from the maximum likelihood two-stage approach (see chapter
7 of the book for details).

3.9 Inference from an RJMCMC algorithm

3.9.1 Inference on model probabilities from an RJMCMC algorithm

After the algorithm has completed, we can use the data frames that store the model choices and parameter values to draw
inference. For the purpose of the exercise, these data frames may also be uploaded into the workspace using:

Distance sampling: Methods and applications case studies May 12, 2015 30

if you do not wish to complete the algorithm, you may
load the data frames from the completed algorithm
for completing the exercise
load("det.model.rdata")
load("detparam.mat.rdata")
load("count.model.rdata")
load("countparam.mat.rdata")
load("Dbl.RJ.2.rdata")

For the RJMCMC algorithm, we may draw inference on both the model probabilities and the model parameters by obtaining
summary statistics of the respective marginal posterior distributions. As for the MH algorithm, we consider the first 9999
iterations of the chain as the burn-in and omit these from obtaining summary statistics. We may use the following code to
obtain model probabilities:

to calculate model probabilities (omiting the burn-in)
kable(t(round(table(det.model[10000:nt])/length(det.model[10000:nt]),6)))

1 2

0.999 0.001

round(table(count.model[10000:nt])/length(count.model[10000:nt]),6)

8
1

We conclude that the preferred detection model was model 2 which included the Type covariate. After the burn-in, this
model was selected in 0.1% of the iterations. The second most preferred detection model was the global model without any
covariates (model 1) which was selected in 99.9% of the iterations. The full model (model 4) including covariates Type and
State was selected in < 0.01% of the iterations. For the count model, the full model (model 8) with all covariates including
Type, JDctr and State was selected in 100% of the iterations.

3.9.2 Inference on parameters from an RJMCMC algorithm

For inference on the parameters, we use the parameter values stored in detparam.mat and countparam.mat and cal-
culate the mean, standard deviation and central 95% credible intervals. We consider the first 9999 iterations as the burn-in
phase and omit these. Furthermore, we now have several choices about which iterations we include for presenting summary
statistics for each parameter. We can use all iterations after the burn-in and consider the value taken by a parameter that was
not in the model to be 0. We could also present summary statistics for parameters conditional on the corresponding covari-
ates being in the model (hence excluding those iterations during which the covariates were not in the model). We could also
condition on the preferred model and present summary statistics for parameters conditional on the model choice. However,
we have to consider that when covariates are correlated, estimates of the coefficient for one covariate with another covariate
absent may not be comparable with estimates when the other covariate is present.

The parameter of interest for our case study was the coefficient for level “TREAT” for the Type covariate in the count model.
From the results of the MH algorithm we concluded that the mean estimate for this parameter was 0.68 (SD = 0.103, 95%
central credible intervals = {0.47, 0.87}). We will now investigate whether the inference on this parameter changes when
including model selection in the RJMCMC algorithm. For this purpose, we obtain summary statistics for this parameter using
the parameter values stored in countparam.mat. As Type was also included in most but not all of the detection models, in-
ference on this parameter might change depending on which iterations we include in the model inference. The Type covariate
was included in all count models. However, three different detection models were selected during the RJMCMC algorithm;
one of these did not include the Type covariate in the detection model while the other two did. We use the following R code
to produce summary statistics for three types of scenarios: 1. using all iterations after the burn-in, 2. conditioning on Type
being part of the detection model and 3. conditioning on the preferred detection model.

Distance sampling: Methods and applications case studies May 12, 2015 31

[1] 0.33

[1] 0.06

2.5% 97.5%
0.21 0.46

[1] 0.78

[1] 0.03

2.5% 97.5%
0.72 0.82

[1] 0.78

[1] 0.03

2.5% 97.5%
0.72 0.82

x24<-which(det.model[10000:nt]%in%c(2,4))+9999
x2<-which(det.model[10000:nt]==2)+9999
infmat<-matrix(c(round(mean(countparam.mat[10000:nt,2]),2),
round(sd(countparam.mat[10000:nt,2]),2),
round(quantile(countparam.mat[10000:nt,2],probs=c(0.025)),2),
round(quantile(countparam.mat[10000:nt,2],probs=c(0.975)),2),
round(mean(countparam.mat[x24,2]),2),
round(sd(countparam.mat[x24,2]),2),
round(quantile(countparam.mat[x24,2],probs=c(0.025)),2),
round(quantile(countparam.mat[x24,2],probs=c(0.975)),2),
round(mean(countparam.mat[x2,2]),2),
round(sd(countparam.mat[x2,2]),2),
round(quantile(countparam.mat[x2,2],probs=c(0.025)),2),
round(quantile(countparam.mat[x2,2],probs=c(0.975)),2)),3,4,byrow=TRUE)
colnames(infmat)<-c("Mean", "SD", "LoLim","UpLim")
rownames(infmat)<-c("All","M2&4","M2")

Table 10: Mean, standard deviation (SD), lower (LoLim) and upper (UpLim) limit
of 95% central credible intervals for the three inference scenarios (all iterations,
conditioning on detection models 2 and 4, conditioning on detection model 2).

Mean SD LoLim UpLim

All 0.33 0.06 0.21 0.46
M2&4 0.78 0.03 0.72 0.82
M2 0.78 0.03 0.72 0.82

In this case, inference on the parameter for level “TREAT” of the Type covariate in the count model is unaffected by whether
we include iterations from only the preferred detection model 2 or from both detection models that include Type (2 and
4). When including all iterations (and hence the 5% of iterations for which Type was not part of the detection model), the
mean estimate for the parameter is slightly smaller (0.67 compared to 0.69 for the other two scenarios). Also, the standard
deviation increases and 95% credible intervals widen for scenario 1.

Distance sampling: Methods and applications case studies May 12, 2015 32

3.9.3 Inference on plot density from an RJMCMC algorithm

Similar to inference on the parameters for an RJMCMC algorithm, we can include all iterations from the chain or condition on
the preferred models for obtaining summary statistics for plot density. For further details, see sections Inference on param-
eters from an RJMCMC algorithm and Inference on plot density from an MH updating algorithm. The summary statistics for
baseline plot density conditional on the preferred models can be calculated using the Dbl.RJ.2 object provided with the
exercise.

4 Maximum likelihood methods for a full likelihood approach

In this section, we use the preferred model from the RJMCMC algorithm for fitting a full likelihood model using maximum
likelihood methods. This model contained the covariate Type in the detection model and the covariates Type, JDctr and State
in the count model. In contrast to the Bayesian approach above, we do not need to define prior and proposal distributions or
set up data frames which store parameter values during the algorithm. We only need to define a likelihood function which
returns the negative log-likelihood – negative as we use the R functionnlm for optimizing which returns the parameter values
which minimize the return of the function. In short, the steps required for this approach can be summarized as:

1. Defining the likelihood function
2. Obtaining maximum likelihood estimates
3. Extracting maximum likelihood estimates, standard errors and AIC
4. Inference on plot density

We note, however, that when using thenlm function, the user is required to provide starting values for the parameters. Model
selection can be done by fitting a range of plausible models and comparing AIC values. Forward step-wise or backward step-
wise methods can be used – see Oedekoven et al. (2013).

4.1 Defining the likelihood function for the maximum likelihood approach

As for the Bayesian approach above, we use the full likelihood which combines the detection and count model Ln,y|z =
Ln × Ly|z . As above we use the log-likelihood ℓn,y|z = loge

(
Ln,y|z

)
= loge (Ln) + loge

(
Ly|z

)
.

In contrast to the Bayesian likelihood functions above, the function covey.ml.log.lik is model-specific as only pa-
rameters that are switched on in the model that is fitted to the data should be part of parameter string p. The function
covey.ml.log.lik calculates the negative log-likelihood given a set of values for parameters p of the defined model
for the covey data. It has three arguments: p, datax (here datax = covey.data) and lim (limits for integrating out
the random effect). In contrast to the Bayesian approach, we do not need to include the random effect coefficients as an
argument for the function. We integrate the random effect out instead. The argument lim makes it easier to define limits
for the integration – values other than infinity may be desirable as infinity may lead to numerical problems. For small random
effects standard deviations (i.e. less than σl < 1), using lim = 5will return approximately the same results as using lim =
Inf. The covey.ml.log.lik function expects certain elements in the data; hence, it is essential that the covey data
are in the format described above, i.e., a data object created with the create.data function.

In the following we look at each component of the likelihood Ln and Ly|z separately and present the R code of the
covey.ml.log.lik that corresponds to the respective components. The code in covey.ml.log.lik can be divided
into 3 parts which we discuss individually below.

4.1.1 Assigning the parameter values p

For illustrating the maximum likelihood approach, we use the preferred model from the RJMCMC algorithm with the factor
covariate Type in the hazard-rate detection model and the full set of covariates available for the count model which includes
the factor covariates Type and State and the continuous covariate JDctr which represents Julian date centred around its mean.

The following three code chunks subdivide the function covey.ml.log.lik into sections that can be readily explained.
The sections themselves are incomplete (i.e. the chunk immediately following does not contain the entire function).

Distance sampling: Methods and applications case studies May 12, 2015 33

covey.ml.log.lik<-function(p,datax,lim){
Part 1 of covey.ml.log.lik(): setting up the parameter values p for covariates
the detection model
scale.int<-p[1] # the scale intercept
shape<-exp(p[2]) # the shape parameter on the log-scale
sig.t<-c(0,p[3]) # coefficient for Type level "TREAT" (level ""CONTROL" is absorbed

in the intercept)
the count model
int<-p[4] # the intercept
typ<-c(0,p[5]) # coefficient for Type level "TREAT" (level "CONTROL" is absorbed

in the intercept)
day<-p[6] # coefficient for JDctr
st<-c(0,p[7:9]) # state coefficients for levels "MS","NC","TN" (level "MO" is

absorbed in the intercept)
std.ran<-exp(p[10]) # the random effects standard deviation on the log-scale

In the case that the user wishes to alter the covariates included in the model using the maximum likelihood
approach, it is essential to only include parameters in argument p that will be estimated. This is in contrast
to the Bayesian approach where the likelihood could be defined for the full model and parameters set to zero
which are not included in the current model.

4.1.2 The likelihood component for the detection function - maximum likelihood methods

As for the Bayesian approach, we use the detection data which are stored in the data frame covey.data$dis.object in
the column distance. The truncation distance w is stored in covey.data$w. With covariates z in the detection function,
we use equation 8.11 of the book as the likelihood component for the detection function which – after log-transforming – is
given by equation 3 above. For details see Section The likelihood component for the detection function above.

The following R code is the part of the function covey.ml.log.lik which calculates the log-likelihood for the detection
model loge

(
Ly|z

)
. It is nearly identical to the equivalent section from the Bayesian approach, except that we do not include

the State covariate.

Part 2 of covey.ml.log.lik():
the likelihood component pertaining to the detection model
calculating the f(y) for each observed distances
le<-nrow(datax$dis.object)
fe<-numeric(le)
alltype<-sort(unique(datax$dis.object$Type))
dis.type<-match(datax$dis.object$Type,alltype)
the sigma(z) for each detection
allscale<-exp(scale.int+sig.t[dis.type])
calculating the f(y) for each observation
note that the truncation distance is stored in datax$w
for (e in 1:le){
fe[e]<-f.haz.function.pt(datax$dis.object$distance[e],allscale[e],shape)/

integrate(f.haz.function.pt,0,datax$w,allscale[e],shape)$value
}
the sum of the log(f(y))
log.e<-sum(log(fe))

If the user wishes to fit a half-normal detection function to point transect data, the functionf.hn.function.pt
should be used instead of f.haz.function. If the user is analyzing line transect data, the functions
f.haz.function.ln and f.hn.function.ln should be used. For fitting models to binned distance
data, the likelihood changes to the multinomial likelihood given by equation 6.26 of the book.

Distance sampling: Methods and applications case studies May 12, 2015 34

4.1.3 The likelihood component for the count model

As for the Bayesian approach, we use a Poisson likelihood for the count model where the expected value λ is modelled as
a function of covariates xq . Due to the repeated counts at the sites, we use the methods described in Section 8.2.5.1 of the
book and include a random effect bl for each site in the count model for which we assume normality with bl ∼ N(0, σ2

l).
In the following subscript l refers to the different sites and subscript t to the repeated surveys. As each site also consisted of
two points we also include a subscript for point k. The expected value λ is then given by equation 4 above.

As this survey design has multiple points per site and repeat visits, we combine the likelihood functions from equations 8.31
and 8.33 of the book. Due to including the random effect, we add the normal densities for the random effect coefficients to
the Poisson likelihoods given for counts (Oedekoven et al. 2013). However, in contrast to the Bayesian approach above, the
random effect is now integrated out analytically. As a consequence, we cannot omit the integral for the random effect from
the likelihood which, after log-transforming, is given by:

loge Ln =
L∑

l=1

loge

 ∞∫
−∞

{
K∏

k=1

Tk∏
t=1

λnlkt

lkt exp[−λlkt]
nlkt!

}
× 1√

2πσ2
b

exp
[
− b2

l

2σ2
b

]
dbl

 ,

where L is the total number of sites (183 for our case study), K is the total number of points per site (2 for each site for our
case study) and Tk is the number of repeat visits to the kth point (ranging between 1 and 4 for our case study).

We use the following function for integrating out the random effect (which is called internally by covey.ml.log.lik).

bl.function<-function(bl,obs,lam,std.ran){
l<-length(bl)
obs.prob<-array(NA,l)
for (b in 1:l){
lam2<-lam*exp(bl[b])
obs.prob[b]<-prod(dpois(obs,lam2))*dnorm(bl[b],0,std.ran)

}
obs.prob

}

For the count model, we use the count data which is a data frame stored in covey.data$glmm.data. Here, each record
represents a single visit to a point and numbers of detections within the truncation distance w are summed up for each visit
in the column covey.data$glmm.data$detections. The part of the covey.ml.log.lik function that calculates
the count model likelihood component is given in the following R code:

Part 3 of covey.ml.log.lik(): the likelihood component pertaining to the count model
setting up indices for the factor covariates and random effect coefficients
State0<-match(datax$glmm.data$State,sort(unique(datax$glmm.data$State)))
Type0<-match(datax$glmm.data$Type,sort(unique(datax$glmm.data$Type)))
gr.id<-sort(unique(datax$glmm.data$gr.id))
Ran0<-match(datax$glmm.data$gr.id,gr.id)
J<-length(unique(datax$glmm.data$gr.id))
calculate the effective area for each visit to a point
glmm.sig<-exp(scale.int+sig.t[Type0])#+sig.st[State0])
n.ptvis<-nrow(covey.data$glmm.data)
l.efa<-array(NA,n.ptvis)
for (j in 1:n.ptvis){
l.efa[j]<-log(integrate(f.haz.function.pt,0,500,glmm.sig[j],shape)$value*pi*2)

}
calculate the log of the likelihood for each site while integrating out the random effect
the expected value for each count without the random effect coefficient
lambda<-exp(int + (typ[Type0]) + (day*datax$glmm.data$JDctr) + st[State0] + l.efa)
lik<-array(NA,J)
for (j in 1:J){
j.rows<-which(Ran0==j)
lik[j]<-integrate(bl.function,-lim,lim,obs=datax$glmm.data$detections[j.rows],

Distance sampling: Methods and applications case studies May 12, 2015 35

lam=lambda[j.rows],std.ran=std.ran)$value
}
log.lik<-sum(log(lik))
log.lik.all<-log.lik+log.e
returns the negative log-likelihood as nlm minimizes
-log.lik.all

}

In the case that the user wants to analyse binned distance data, the same modifications apply as described
above. We note, however, that models where distances are analysed as exact and models where distances are
analysed as binned cannot be compared using criteria such as AIC. (See R code below for obtaining AIC values
using this approach). This is because the data change between the two approaches.

4.2 Obtaining maximum likelihood estimates

We use the nlm function for optimizing the likelihood function covey.ml.log.lik. This function requires that the user
provides starting values for the parameters using its argument p. For simplicity, we use the same starting values as for our
MH algorithm above. Setting the argument hessian to TRUE estimates the Hessian matrix which we require for obtaining
standard errors for the parameter estimates.

initial values for the detection function parameters
MCDS with covariates type and state
scale intercept and shape (enter the model on the log-scale)
sig.0<-log(130) # the scale intercept
sha.0<-log(2.5) # shape parameter
type coefficient
sigtr.0<-0.2 # level treat
initial values for count model parameters
int.0<- -13 # intercept
type coefficient
typ.0<- 0.4 # level TREAT
Julian Date coefficient (covariate JDctr)
day.0<- -0.01 # continuous covariate
state coefficients
stms.0<- 0.014 # level MS
stnc.0<- -0.38 # level NC
sttn.0<- -1.36 # level TN
random effects standard deviation and coefficients
std.ran.0<-log(1)
combining the initial values in an array for input into the covey.ml.log.lik function
p <-c(sig.0,sha.0,sigtr.0,int.0,typ.0,day.0,stms.0,stnc.0,sttn.0,std.ran.0)
testing the function using the initial values
covey.ml.log.lik(p=p,datax=covey.data,lim=5)
minimizing the function (i.e. maximizing the likelihood)
nlm1<-nlm(f=covey.ml.log.lik,p=p,hessian=TRUE,datax=covey.data,lim=5)

For the purpose of continuing the exercise without waiting for the algorithm to converge, we can load the nlm1 into the
workspace:

upload the resulting object into the workspace
load("nlm1.rdata")

We can use the object nlm1 to extract parameter estimates, the AIC value and the standard errors for the parameter es-
timates. We have to remember, however, that the random effects standard deviation enters the model on the log-scale.
Hence, we need to back-transform the estimate and the standard error. The random effects standard deviation is the 10th

parameter of the model.

Distance sampling: Methods and applications case studies May 12, 2015 36

the negative log-likelihood value
nlm1$minimum

[1] 7535.147

AIC
nlm1$minimum * 2 + (2 * length(nlm1$estimate))

[1] 15090.29

parameter estimates
round(nlm1$estimate,4)

[1] 5.8382 1.2912 -0.2466 -13.1559 0.6823 -0.0234 -0.4301
[8] -1.4633 -1.3005 -0.3450

standard errors
round(sqrt(diag(solve(nlm1$hessian))),4)

Warning in sqrt(diag(solve(nlm1$hessian))): NaNs produced

[1] NaN 0.0747 0.0382 0.1130 0.0781 0.0021 0.1718 0.1198 0.1922 0.0904

to convert the parameter estimate and standard error for the random effects
standard deviation back from the log-scale we use:
round(exp(nlm1$estimate[10]),2)

[1] 0.71

round(sqrt(diag(solve(nlm1$hessian)))[10]*exp(nlm1$estimate[10]),4)

Warning in sqrt(diag(solve(nlm1$hessian))): NaNs produced

[1] 0.064

We note that the algorithm did not converge properly. This was indicated by the NA in the array of standard errors as well
as the code returned by the nlm function with nlm1$code = 3.

4.2.1 Solving the convergence problem

One method for solving the convergence problem is to fix the shape parameter at the estimate obtained above. This requires
a small alteration of the first part of the likelihood function (which we call covey.ml.log.lik2) where we set up the
parameters:

The code chunk that follows is merely the first part of covey.ml.log.lik2; it does not contain the entire function.

this function is uploaded into your workspace using the source command above
covey.ml.log.lik2<-function(p,datax,lim){
Part 1 of covey.ml.log.lik2(): setting up the parameter values p for covariates
the detection model
scale.int<-p[1] # the scale intercept
shape<-exp(1.291197)# the fixed shape parameter is not estimated

Distance sampling: Methods and applications case studies May 12, 2015 37

sig.t<-c(0,p[2]) # coefficient for Type level "TREAT" (level "CONTROL"" is absorbed
in the intercept)

the count model
int<-p[3] # the intercept
typ<-c(0,p[4]) # coefficient for Type level "TREAT" (level "CONTROL" is absorbed

in the intercept)
day<-p[5] # coefficient for JDctr
st<-c(0,p[6:8]) # state coefficients for levels "MS","NC","TN" (level "MO" is

absorbed in the intercept)
std.ran<-exp(p[9]) # the random effects standard deviation on the log-scale

The remainder of the covey.ml.log.lik2 function is equivalent to part 2 and part 3 of the covey.ml.log.lik func-
tion above. Again, we use the nlm function to maximize the likelihood. As we do not estimate the shape parameter of the
hazard-rate detection function, we have one parameter less to estimate compared to covey.ml.log.lik.

combining the initial values in an array for input into the covey.ml.log.lik2 function
p2 <-c(sig.0,sigtr.0,int.0,typ.0,day.0,stms.0,stnc.0,sttn.0,std.ran.0)
minimizing the function (i.e. maximizing the likelihood)
nlm2<-nlm(f=covey.ml.log.lik2,p=p2,hessian=TRUE,datax=covey.data,lim=5)

For the purpose of continuing the exercise without waiting for the algorithm to converge, we can upload the nlm2 object
using:

upload the resulting object into the workspace
load("nlm2.rdata")

the negative log-likelihood value
nlm2$minimum

[1] 7535.146

AIC
nlm2$minimum * 2 + (2 * length(nlm2$estimate))

[1] 15088.29

parameter estimates
round(nlm2$estimate,4)

[1] 5.8379 -0.2463 -13.1543 0.6818 -0.0233 -0.4290 -1.4601 -1.3004
[9] -0.3471

standard errors
round(sqrt(diag(solve(nlm2$hessian))),4)

[1] 0.0432 0.0532 0.1254 0.0972 0.0023 0.1717 0.1843 0.1920 0.0919

to convert the parameter estimate and standard error for the random effects standard
deviation back from the log-scale we use:
round(exp(nlm2$estimate[9]),2)

[1] 0.71

Distance sampling: Methods and applications case studies May 12, 2015 38

round(sqrt(diag(solve(nlm2$hessian)))[9]*exp(nlm2$estimate[9]),4)

[1] 0.065

4.2.2 Comparing the parameter estimates from the Bayesian and maximum likelihood approaches

The means and standard deviations of the parameters obtained from the marginal posterior distribution conditional on the
preferred model from the RJMCMC algorithm were similar to the maximum likelihood estimates and standard errors (Table 2).
This is expected as we placed uniform priors on all parameters. All standard errors in Table 2 were slightly smaller compared
to the standard deviations; however, this may be because one less parameter was estimated for the maximum likelihood
approach.

Table 2. Mean and standard deviation (SD) of the marginal posterior distribution of parameter estimates conditional on
the preferred model from the RJMCMC algorithm as well as maximum likelihood estimates (MLE) and standard errors (SE)
obtained with a maximum likelihood approach of the same model with a fixed shape parameter.

Table 11: Mean and standard deviation (SD) of the marginal posterior distribution
of parameter estimates conditional on the preferred model from the RJMCMC
algorithm as well as maximum likelihood estimates (MLE) and standard errors
(SE) obtained with a maximum likelihood approach of the same model with a
fixed shape parameter.

Mean SD MLE SE

Scale int 5.829 0.008 5.838 0.0432
Shape 1.248 0.032 1.291 NA
Scale Type -0.293 0.030 -0.246 0.0532
Int -13.261 0.095 -13.154 0.1254
Type 0.783 0.034 0.682 0.0972
JDctr -0.028 0.002 -0.023 0.0023
StateMS -0.482 0.017 -0.429 0.1717
StateNC -1.398 0.140 -1.460 0.1843
StateTN -1.041 0.108 -1.300 0.192
RE SD -0.283 0.018 -0.347 0.0919

4.2.3 Inference on plot density from the maximum likelihood approach

If we wish to draw inference on plot density, we can use the parameter estimates from the count model in the R object nlm2.

We note that while λlkt (equation 4) models the expected counts, exp
(∑Q

q=1 xqkltβq + bl

)
from the λlkt model (i.e.,

without the effective area loge(νlkt)) models the densities (i.e., number of coveys per m2)

As for the Bayesian approach, we can obtain posterior distributions of plot density for any given combination of covariates.
For comparison with the Bayesian approach, we obtain estimates of baseline plot density where each covariate value is set to
their baseline level (level for Type = “CONTROL”, JDctr = 0, level for State = “MO”). We further need to add a contribution from
the random effect to adjust for bias: 0.5×σ2

l . Hence, the expected baseline density Dbl.ml can be expressed as: Dbl.ml =
exp(β1 + (0.5 × σ2

l))), where β1 is the intercept for the count model and σl is the random effects standard deviation.
As distance measurements were metres (covey.data$dis.unit = m) we need to convert the density estimates from
Dbl.ml/m2 to Dbl.ml/km2.

parameter 3 of the covey.ml.log.lik2 function is the count model intercept,
parameter 9 is the random effects standard deviation
Dbl.ml<-exp(nlm2$estimate[3] + (0.5 * exp(nlm2$estimate[9])^2))
Density per km^2
Dbl.ml<-Dbl.ml*1000*1000

The estimate of Dbl.ml is a function fD(β, θ) of the parameter estimates in the R object nlm2, β, θ. Hence, the variance
of D̂bl.ml is a function of the Hessian in nlm2:

Distance sampling: Methods and applications case studies May 12, 2015 39

v̂ar(D̂bl.ml) =

[
∂fD(β, θ)

∂(β, θ)

∣∣∣∣
(β,θ)=(β̂,θ̂)

]T

H−1

[
∂fD(β, θ)

∂(β, θ)

∣∣∣∣
(β,θ)=(β̂,θ̂)

]

The derivatives of the parameters are generally difficult to obtain. However, a numerical approximation of the derivatives
evaluated at the maximum likelihood estimates β̂, θ̂ can be obtained via finite differences. For example, we use the following
for the derivative of the ith element of β:

∂fD(βi, β̂−i, θ)
∂βi

∣∣∣∣
βi=β̂i

= fD(β̂i + δβ̂i, β̂−i, θ) − fD(β̂i − δβ̂i, β̂−i, θ)
2δβ̂i

(6)

The following R function uses this numerical approximation of the derivatives for obtaining a variance estimate for our base-
line density estimate Dbl.ml where the value for δ from equation 6 is user defined.

var.Dblml<-function(par,hessian,delta){
int<-par[3]
log.resd<-par[9]
deriv<-matrix(0,1,9)
deriv[1,3]<-(exp(int+(delta*int))*exp(0.5*exp(log.resd)^2)-exp(int-(delta*int))

*exp(0.5*exp(log.resd)^2))/(2*delta*int)
deriv[1,9]<-(exp(int)*exp(0.5*exp(log.resd+(delta*log.resd))^2)-exp(int)

*exp(0.5*exp(log.resd-(delta*log.resd))^2))/(2*delta*log.resd)
varian<-deriv%*%solve(hessian)%*%t(deriv)
varian
}

We use this function to obtain standard errors for the density estimate. The units for density were originally m2. However,
we wish to obtain the standard error for density per km2. Hence, we need to convert the standard errors accordingly.

We take the square root to obtain the standard error for the density estimate
Dbl.ml.se<-sqrt(var.Dblml(nlm2$estimate,nlm2$hessian,delta=0.0001))*1000*1000

Dbl.RJ.2<-array(NA,nt)
we only use iterations with detection model 2 after the burn-in
for (i in x2){
Dbl.RJ.2[i]<-exp(countparam.mat[i,1] + (0.5 * exp(countparam.mat[i,7])^2))

}
Density per km^2
Dbl.RJ.2<-Dbl.RJ.2*1000*1000

Our estimated baseline density of coveys (coveys per km2) using the maximum likelihood approach is 2.49 (SE = 0.31). In
comparison, the mean estimate of baseline density obtained using the RJMCMC approach (conditional on the preferred
model, see above) is 2.32 (SD = 0.27).

5 Summary

We presented Bayesian as well as maximum likelihood methods including R code for analysing distance sampling data using
the full likelihood from chapter 8. The full likelihood methods have the advantage that parameter estimates of the detection
and count models are obtained simultaneously and do not require conditioning on a first stage detection model (as the two-
stage approach from chapter 7). For the full likelihood approach, uncertainty from the detection model propagates into the
count model. We used multiple covariate distance sampling methods for the detection model where the scale parameter
was a function of covariates. For the count model, we used a plot count model which was extended with a random effect for
site.

One of the benefits of the Bayesian approach is that it is possible to include prior information. This may be particularly useful,
e.g. in the case that the detection model needs to be fitted to a small number of detections. It might also be easier to integrate

Distance sampling: Methods and applications case studies May 12, 2015 40

out the random effect using the data augmentation scheme where the individual coefficients are included in the model and
updated during each iteration of the chain. Selection between and averaging over a large range of possible models can be
implemented with RJMCMC methods. Some of the disadvantages for the Bayesian approach are that the algorithm may take
a long time to complete and that it might be difficult to find appropriate proposal distributions, in particular for the RJ step.

The maximum likelihood approach does not require defining prior or proposal distributions. One of the disadvantages for
the maximum likelihood approach is that, in the case of random effect models, the analytic integration of the random effect
may lead to problems for calculating the parameter estimates and the Hessian matrix. No prior information can be included.

6 Acknowledgements

The national CP33 monitoring program was coordinated and delivered by the Department of Wildlife, Fisheries, and Aqua-
culture and the Forest and Wildlife Research Center, Mississippi State University. The national CP33 monitoring program was
funded by the Multistate Conservation Grant Program (Grants MS M-1-T, MS M-2-R), a program supported with funds from
the Wildlife and Sport Fish Restoration Program and jointly managed by the Association of Fish and Wildlife Agencies, U.S.
Fish and Wildlife Service, USDA-Farm Service Agency, and USDA-Natural Resources Conservation Service-Conservation
Effects Assessment Project.

References

Davison, A. C. 2003. Statistical Models. Cambridge University Press, Cambridge.

Gelman, A., G. O. Roberts, and W. R. Gilks. 1996. Efficient Metropolis jumping rules. Pages 599–608 in J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith, editors. Bayesian Statistics. Oxford University Press, Oxford.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57:97–109.

Oedekoven, C. S., S. T. Buckland, M. L. Mackenzie, K. O. Evans, and L. W. Burger. 2013. Improving distance sampling: Ac-
counting for covariates and non-independency between sampled sites. Journal of Applied Ecology 50:786–793.

Oedekoven, C. S., S. T. Buckland, M. L. Mackenzie, R. King, K. O. Evans, and L. W. Burger. 2014. Bayesian methods for hierar-
chical distance sampling models. Journal of Agricultural, Biological, and Environmental Statistics 19:219–239.

Oedekoven, C. S., R. King, S. T. Buckland, M. L. Mackenzie, K. O. Evans, and L. W. Burger. submitted. Using hierarchial centering
to facilitate a reversible jump MCMC algorithm for random effects models.

This document describes a case study from

Distance Sampling: Methods and Applications
published by Springer

See Case studies website

Also see Distance sampling website

http://www.springer.com/gb/book/9783319192185?countryChanged=true
http://www.creem.st-and.ac.uk/DS.M&A/
http://distancesampling.org

	The data
	Importing the data and functions into an R Studio workspace
	Preparing the data for analyses

	Setting up a Metropolis Hastings updating algorithm
	Defining the likelihood function
	Components of the probability density function of observed distances
	Assigning the parameter values p for covey.full.bayes.log.lik
	The likelihood component for the detection function for covey.full.bayes.log.lik
	The likelihood component for the count model for covey.full.bayes.log.lik

	Defining the prior probabilities for the parameters
	Proposal distributions for updating parameters in the MH algorithm
	Initial values for the MH updating algorithm
	Storing the parameter values for the MH updating algorithm
	The MH updating algorithm
	Pilot tuning the MH updating algorithm
	Inference from an MH updating algorithm
	Inference on plot density from an MH updating algorithm

	Setting up a reversible jump MCMC algorithm
	The RJ step
	Defining the likelihood function for the RJMCMC algorithm
	Prior probability distributions
	Proposal distributions for the RJ step
	Storing the parameter values and model choices for each iteration
	Setting initial models and parameter values for the RJMCMC algorithm
	The RJMCMC algorithm
	Pilot tuning the RJMCMC algorithm
	Inference from an RJMCMC algorithm
	Inference on model probabilities from an RJMCMC algorithm
	Inference on parameters from an RJMCMC algorithm
	Inference on plot density from an RJMCMC algorithm

	Maximum likelihood methods for a full likelihood approach
	Defining the likelihood function for the maximum likelihood approach
	Assigning the parameter values p
	The likelihood component for the detection function - maximum likelihood methods
	The likelihood component for the count model

	Obtaining maximum likelihood estimates
	Solving the convergence problem
	Comparing the parameter estimates from the Bayesian and maximum likelihood approaches
	Inference on plot density from the maximum likelihood approach

	Summary
	Acknowledgements
	References

